Let us study the tail distributions of three related distributions. The asymptotic decay rate measures the thickness of a random variable's tail distribution. It is defined by
(1) |
For exponentially distributed with scale parameter :
(2) |
For gamma distributed with shape parameter and scale parameter :
In , we used the asymptotic behavior of the gamma distribution
For normal distributed with mean and variance :
(4) |
The asymptotic decay rates for the exponential, gamma, and normal distribution are given in , , and , respectively. We see that the decay rate of the normal distribution is always maximal, i.e., . In contrast, the decay rates of the exponential and gamma distributions depend on the scale parameter .
By normalizing the mean ( ) by setting and , we can compare the decay rates of the exponential distribution and gamma distribution: then, the decay rate of the exponential distribution is and of the gamma distribution is . That is, keeping the mean normalized, the gamma distribution decays slower than the exponential distribution with shape parameters , and faster than the exponential distribution with . With , the distributions coincide. When , the gamma distribution approaches the normal distribution and .
References: