There is a lot of literature on the inverse of a Gaussian distributed variable (this should not be fixed with inverse Gaussian distribution—it is a different matter). The inverse distribution is ill-behaved; the mean and variance do not generally exist.
I came up with a simple approximation that works well if the mean is large enough and the variance is small enough (I have yet to work out the details of the exact conditions for this approximation. However, the results can be verified, e.g., by Monte Carlo simulations).
First, approximate the Gaussian distributed variable by a log-normally distributed variable Lognormal with corresponding mean and variance, i.e.,
Using the theory of log-normal distribution, the inverse of is now given by
That's it!
References: