
One can assimilate a work of art, or, let us say, just a work, to the information
we can put on a document, seal in a bottle which we will throw into the middle
of the ocean. Will it ever be found? When and by whom and how will it be read,
interpreted?

— Iannis Xenakis, Formalized Music: Thought and Mathematics in Musics,
Pendragon Press, Hillsdale, NY, Pendragon Revised Edition, 1992.
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Abstract

Since 1981, the Nordiska Mobiltelefongruppen (NMT), new generations of
cellular network technologies have emerged every tenth year. The 4th gen-
eration (LTE, 4G) developed into the 5th generation (5G), which is currently
being implemented and actively marketed to customers as a fast mobile
phone subscription option in Finland and all around the world. Furthermore,
6th generation (6G) technologies are actively being studied and designed
in academia and industry, and, most likely, the development of wireless
communication will continue beyond our comprehension horizon.
The 5G and 6G networks require more antennas, higher bandwidth, and a

higher density of base stations. Often, they are composed of multiple tiers
consisting of various types of devices; these networks are referred to as
heterogeneous networks (HetNets), which can also exhibit scale-free (frac-
tal) behaviour. Furthermore, modern technology includes airborne network
terminals, known as aerial base stations (ABSs), or non-terrestrial terminals
(NTNs), which complement terrestrial networks. The low Earth orbit (LEO)
satellites fall into this category. The most internationally recognized LEO
system may be Starlink, which already offers terrestrial LEO terminals
in the retail market. Another collaboration project is the Infrastructure
for Resilience, Interconnectivity, and Security by Satellite (IRIS2), slated
for deployment by the European Union (EU) by 2027. The LEO networks
enhance capacity and connectivity, but also increase the complexity of the
totality; the LEO introduces another tier and spatial dimension to HetNets.
This drives the search for alternative comprehensive system-level analysis
methods of cellular networks. Here, stochastic geometry analysis offers a
viable option, modeling the network transmitters as random point patterns,
i.e., point processes (p.p.’s), and exploiting the enormous mathematical
toolbox available for the subject. While basic stochastic geometry formalism
is well-established, it has only recently been applied to LEO. In the spirit
of the stochastic geometry analysis of the terrestrial networks, we aim
for clarity and insight into the results. We ultimately deliver an insight-
ful, tractable, and simple (but not simplistic) framework for the stochastic
geometry analysis of LEO networks and satellite base station (LEO BS) per-
formance. The proposed novel stochastic geometry framework, modeling
the Earth as a flat infinite plane, establishes access and utilization of the
most sophisticated methods and results developed for terrestrial networks
over the years.
The studied performance metrics include the signal-to-interference ratio

(SIR), signal-to-interference-plus-noise ratio (SINR), and Shannon through-
put. Furthermore, the meta distribution of the SIR (SIR MD) is explored,
which reveals fine-grained information about the reliability of the typical
LEO BS. Further, we study the interference distribution. Regarding the
design of the design of LEO networks, one of the crucial analytical insights
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arising in various works, including the articles included in this thesis, is that
for a given altitude of the LEO BSs, there exists an optimal density of the
LEO constellation/Earth transmitters that maximizes the (Shannon capac-
ity) of the network: Under the noise-limited channel and the transmitters
forming a Poisson point process (PPP), there exist “an optimal average num-
ber of Earth transmitters inside a LEO BS −3 dB footprint” that maximizes
the average SINR and throughput. However, this density leads to highly
varying instantaneous performance over the LEO BSs, which means that
the network user terminals, which we consider as omnidirectional mobile
user equipments (UEs), are not treated fairly. To tackle the problem of user
fairness, we propose a solution to improve the user fairness and introduce
successive signal cancellation (SIC), and study such a scheme by the joint
probability distribution of the SIR of the k nearest UEs, which is derived
using the factorial moment measure. While the analysis is formulated for
a LEO uplink, it also applies to downlink. Many results are intuitive and
insightful. For example, under broad network settings, the interference
can be characterized by the gamma distribution, and the SIR distribution
can be characterized by the Lomax distribution: the Lomax distribution is
heavy-tailed, implying frequent outliers.
In addition to the non-temporal analysis, we conduct a temporal analysis

of the interference waveform. We derive closed-form estimations for the
autocorrelation functions and the power spectral density (PSD). The analy-
sis justifies that the interference is a stationary Gaussian process. While
providing a simple (not simplistic) priori model for the LEO channel, the
characterizations are widely utilizable in modern statistical signal process-
ing in LEO networks, including those that utilize machine learning (ML) or
artificial intelligence (AI).
The results enlighten the system-level characteristics of the network,

ultimately allowing for more efficient allocation of simulation resources.
The insights benefit statistical signal processing as LEO networks become
increasingly dense, terrestrial networks expand to high frequencies, causing
interference in the frequency bands currently operated by satellites, and
sophisticated statistical inference is required. The stochastic analysis of
the LEO communication system metrics finally guides us into the intriguing
mathematical realms, such as Lévy processes, power laws, and Gaussian
processes. The results benefit, including but not limited to coding, system-
level design of the LEO communication systems, and pure mathematics.
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Preface

Stochastic geometry is widely used for the analytical study of the per-
formance of Cellular networks, including terrestrial and non-terrestrial
networks (NTNs), as well as mobile ad hoc networks (MANETs). Access
controls, such as Aloha random access or Code Division Multiple Access
(CDMA), are feasible for stochastic geometry study, in uplink and downlink
[14]. The stochastic geometry also links to random graphs and percola-
tion theory in the routing protocol models. These routing protocol models
are also applicable to inter-satellite communication, as proposed in [87]
and [11]. However, the subject of this thesis is in the interference char-
acterization, more specifically in the low Earth orbit (LEO) uplink (other
interpretations are possible), and fundamentally in the resulting statistics
of the signal-to-interference ratio (SIR) and the signal-to-interference-plus-
noise ratio (SINR). Medium access control, or other such implementation
details, are left open.

[︁
Some earlier efforts are

]︁
severely limited in usefulness, by lack

of generality and physical insight, and a concomitant dependence
on local, empirical data, and circumstances.

— David Middleton, [61].

In the spirit of David Middleton, in the analysis of LEO networks, I have an
urge for simple results that come with clear insight into whichever perfor-
mance metric is under study, whether we are interested in the distribution
of interference, the distributions of SIR or SINR, or throughput. The results
of this work aim to be independent of the orbital metrics such as altitude,
elevation angle, and antenna patterns. Furthermore, independence from
the random distribution of satellites and other receivers or transmitters
will be reasoned. Indeed, in my opinion, the purpose of mathematical anal-
ysis is to produce insight. Hence, instead of complex-looking equations,
simple expressions are sought in the thesis—even though this would mean
a trade-off between realism and accuracy. In this regard, simulations go
hand in hand with the simplified system model and analysis: the (more
realistic) simulations verify to what degree, or within what region, the
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analytical insights apply to the desired system model. More precisely, the
crucial system model simplification in the thesis is the narrow-beam as-
sumption for the LEO BS (alternatively, for the Earth transmitters) and
the Poisson assumption for the random locations of the Earth transmitters
(alternatively, for the random locations of the satellite footprints on the
Earth’s surface). The narrow-beam assumption enables us to model the
Earth as an infinite plane, and that the spatial path losses are equal for all
(relevant) transmitters. However, even with the simplifications, we cannot
avoid complicated equations: Most notably, in the order statistics analysis
of the SIR, the expressions become formidable, and either closed forms or
analytical forms are difficult to acquire. Still, in this case, the analytical
results contain insight within the analytical inquiry. For example, the SIR
process can be characterized as a gamma process, which is a well-studied
pure-jump Lévy process in modern probability theory (the gamma process
then helps us derive the order statistics and calculate the numerical re-
sults for interference cancellation). For the throughput, SIR, and SINR
distributions, even closed-form expressions are proposed. Furthermore, in
the temporal interference analysis, we propose closed-form power spectral
density (PSD) estimations for the interference.
A great part of my explorations is constructed almost ex nihilo without

many precursor works on the stochastic geometry analysis of satellite
networks (I believe this is a characteristic of doctoral pursuits), while
also standing on the shoulders of giants and utilizing the tools and results
from stochastic geometry analysis in terrestrial networks. As of today, I
may call myself an engineer—maybe even a signal processor—at least a
mathematician who has a system-level perspective of the wireless networks
through the stochastic geometry analysis.

Structure of the work
The thesis surveys recent research regarding narrow-beam LEO modeling,
and it is structured in four chapters. Chapter 1 is a general overview of the
LEO and the stochastic geometry modeling of the LEO as well as terrestrial
networks. Some general future challenges regarding the emerging satel-
lite networks are discussed, and the most important stochastic geometry
explorations are presented. Special attention is paid to the interference
waveform modeling in terrestrial networks to emphasize that the differ-
ences in topology contribute to non-Gaussian waveform statistics, which
deviate from our results. In this regard, to the best of our knowledge, the
thesis covers novel work that addresses such waveform statistics in LEO
networks, utilizing stochastic geometry analysis.
Chapter 2 introduces the temporal and non-temporal channel model pro-

posed in the thesis, including fading, Doppler shift, and antenna attenuation.
Coherence time and its dependence on the carrier frequency are carefully
simulated and studied. Furthermore, the simplified planar Earth model, in
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which the mathematical analysis will be based, is formulated. It is compared
to a spherical, more realistic system model. Essentially, the narrow-beam
LEO BS assumption, which is an assertion that follows the entire thesis,
validates the planar system model.
Chapter 3 introduces the non-temporal stochastic geometry analysis. In

the first section 3.1, a mathematically precise characterization for the
stochastic process is given, and in Section 3.2, the important properties of
the homogeneous PPP are introduced and studied. The reader familiar with
the point process theory might skip these sections. The reader who is not
familiar with the properties of the homogeneous PPP, but is not interested
in the analytical details, can briefly familiarize themselves with the yellow-
colored parts. Sections 3.1 and 3.2 do not contain new analytical results,
but introduce partially contemporary analysis on the subjects. Section
3.3 onwards, we introduce and analyze the Gaussian projection process,
which centers on the kernel of this thesis. The interference distribution
is studied, as well as the SIR, SINR, and throughput distribution. The
meta distribution of the SIR is explored, as well as successive interference
cancellation. Finally, an optimal satellite constellation density is proposed
that maximizes the throughput. All approaches and the derived results in
the chapter are novel work of the authors.
Finally, in Chapter 4, the temporal interference waveform is carefully

studied through the correlation functions and the power spectral density
(PSD). Interference cancellation techniques based on filtering reducible
frequencies from the total received signal to improve the SIR are being put
forth and analyzed.
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1. Introduction

1.1 Motivation

Satellites could be used as backup connections especially in
locations where terretrial network is not available.

This is one motivation for the emergence of the LEO networks, which are
being widely implemented, and the trend is unavoidable. Optimizing the
performance of the LEO networks requires a deep understanding of their
fundamental nature. Especially in the ever-denser networks, the design
requires in-depth simulations. These simulations become quickly cumber-
some to implement in dense networks, and gaining statistically remarkable
general insight is laborious with multiple layers and tiers of base stations,
users, and other terminals. Stochastic geometry provides a tool for tractable
analysis of such situations, where, for example, megaconstellations can be
modeled by random point processes that allow sophisticated mathematical
analysis. This enables more efficient allocation of simulation resources and
better design of the LEO networks.
During my years of doctoral studies, I witnessed the emergence of mul-

tiple interesting properties of low Earth orbit networks (LEO) captured
by stochastic geometry analysis from different authors and various per-
spectives. These properties include the existence of an optimal network
density of co-channel Earth transmitters and satellites that maximizes the
average network speed, i.e., the average (Shannon) capacity, also called
throughput, by which we refer to as the information theoretical maximum
rate of data bits per unit time (sometimes further normalized by the channel
bandwidth; spectral efficiency) that is possible to transmitted through the
terrestrial-LEO link. Further, an important observation noted by multiple
authors is that the dense LEO networks can be modeled as random point
patterns. For example, a Walker constellation can be accurately modeled
with random point patterns, or point processes (p.p.), which lie at the core
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of stochastic geometry theory. Particularly mathematically tractable of
these is the Poisson point process (PPP). If we assume that the constellation
density is constant (locally, this holds for a large class of constellations), we
can use the homogeneous PPP, which is the simplest and best-known (non-
trivial) p.p. Moreover, with a narrow-beam LEO BS antenna, we can use a
planar Earth model approximation, even more simplifying the analysis. The
Earth transmitters can also be modeled as a homogeneous PPP, especially
if we assume independent mobility patterns, leading to the independent
instantaneous locations characterized by the PPP.
Although not yet utilized as a standard method throughout the industry

(which, arguably, is the aspiration rather than merely an academic exercise),
I confidently say that the stochastic geometry analysis of the LEO commu-
nication networks benefits other system-level and link-level simulation and
analysis methods. It conveys insight into increasingly complex commu-
nication systems, ultimately enabling better system design and optimal
allocation of simulation resources in the forthcoming 5G, 6G, and beyond
projects.

1.2 Random variables, probability and stochastic processes

While it is debated if reality is deterministic or not, there is consensus that
worldly phenomena are causal.

For it is impossible for anything to come into being without cause.

— Plato, Timaeus.

However, the cause does not have to be a deterministic object occupying a
definite location in the spatial domain and time but can exhibit uncertainty,
which we call randomness. To be more precise, randomness is commonly
interpreted as a practical characterization of a, in principle, deterministic
system when we have limited knowledge about its spatial and/or temporal
states and/or which exhibit chaotic behavior, i.e., arbitrary small changes
in the initial state cause large dispersion in the outcomes. For example,
for a flipper, the outcome, also called a random event or realization, of
the coin flip is the cause of all her actions. Unless the flipper is a talented
cheater (or Laplace’s demon), the face upon which the coin will land is
unpredictable, i.e., random, or one could say, pseudorandom (because it is
ultimately a deterministic, Newtonian system). Namely, in addition to the
energy of the airborne coin spanned by a million muscle tensions, every
little breeze of wind or roughness in the landing site, etc., contributes to the
realization of the coin toss; hence, its prediction is practically impossible.
Alternatively, one can prevent cheating altogether by, instead of using a
coin, by using pure randomness, e.g., a quantum flipper. Namely, there are
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physical examples where the system randomness seems as inherent and as
inseparable fundamental property as the causality: quantum mechanics. 1

The terms random and stochastic are often used interchangeably; however,
we can understand the former to describe the nature of the phenomena,
and the latter refers to the statistical modeling approach of it. The word
“stochastic” stems from the Creek stochos, meaning a kind of target, goal,
or aiming at a mark: a stable state, described by statistics, towards which
the system asymptotically develops under the law of large numbers—after
sufficiently many (infinitely many) flips of a fair coin, almost surely 50% of
the flips land to heads, and 50% land to tails. This is the statistical descrip-
tion, or the probability distribution, of the r.v. and the stochastic process
representing a coin flip. Interpretation of the probability has nothing to
do with the mathematical formulation of its distribution: Whether a r.v. is
purely random or merely pseudorandom is irrelevant.
Often, deterministic and stochastic approaches are to varying extents

intertwined. Weather forecasting is an excellent example of this: the chosen
initial conditions uniquely determine the outcome of the (deterministic)
Navier-Stokes equations that are solved numerically. However, in practice,
we can not avoid the uncertainty in the initial conditions (because of the
limited accuracy of the measurement devices and their limited allocation
resolution). Hence, it is often said that something like “it is raining next
Tuesday with the probability p”, which is based on the observation that
the fraction p of the initial conditions led to rain on Tuesday in the simula-
tions. Vaguely speaking, this is a Bayesian, subjective interpretation of the
probability: the probability describes the uncertainty in our knowledge. On
the contrary, a frequentist assigns a probability only to repeatable events:
for example, the coin toss (one can hardly call the weather next Tuesday a
repeatable event—however, the weather each year on the first Tuesday of
May is such). Unfortunately, the chaotic nature of the equations and the ac-
tual weather system they describe will make the different solutions blow up
all over after a finite time: because of the butterfly effect, the deterministic
approach, with the unavoidable uncertainty to the initial conditions (how-
ever, how small), the equation do not, in practice, provide any meaningful
information about the weather, say, after a year. To make predictions of
the weather after one year, we can abandon the mechanistic Navier-Stokes
equations (even though mechanistic climate models can be helpful here)
and study the historical distribution of rainy days at a given location over a
given season.
Let us get back to the weather example, and setX =“the daily total rainfall

1A reductionist reducing the coin flip to quantum mechanics could point out here
that also the coin flip (and everything, in that manner) is fundamentally purely
random and indeterministic. However, there is an antithesis to this: despite chal-
lenging drawbacks of the hidden variables theories, as of today, many have argued
that quantum randomness is also only a manifestation of our limited knowledge of
the underlying, deeper, deterministic reality.
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in the typical city in Finland in November”. But sometimes, there is no direct
access to the desired X. Maybe we only indirectly observe; “the average
monthly rainfall is 60 mm in the typical city of Finland in November”. 2

Alternatively, we could observe; “the average monthly November rainfall
in the Finnish cities is 60 mm; furthermore, 90% of the days contribute
to half of the total rainfall.” 3 Unfortunately, neither example delivers
exhaustive information on X. The former provides only information about
the average rain, synonymous with themean and expected value, or the first
moment E(X). On the contrary, fortunately, the latter includes additional
information, on which we can rely for educated estimates of the rainfall
statistics. Namely, the sporadic nature of the heavy rains indicates that
the rain is not uniform over the days: should the three days of the month
contribute to 30 mm of rain out of 60 mm, either some days are dry or
the rain is moderate. We can infer that the variance is likely to be large.
This may also suggest a high skewness, even high kurtosis (determined
by the first four moments E(X),E(X2),E(X3) and E(X4)), i.e., a kind of
heavy-tailed behavior. The heavy-tailed rain distribution can be the case
if the area is prone to storms that cause sporadic but outstandingly heavy
rainfall. Order statistics, which are also under study in this thesis, would
describe the distribution of the heaviest daily rainfall, the second heaviest,
etc.
In other words, by educated statistical inference, we can make refined

predictions of the distribution ofX even thoughX is not fully characterized
by the observational data, which describes only E(X) plus some information
about the higher moments, as in the Finnish weather example. From the
moments, we can predict properties such as “the average number of days
that one needs a raincoat in November in Finland”, which event can be
formulated simply as “the probability that there is rain during a day in a
Finnish city in November”. On the contrary, more fine-grained statistics,
such as “the probability that it is raining in the morning, conditioned that it
will rain during the day” can not be inferred from the information at hand.

1.2.1 Randomness in communication

The weather analogy goes along with the wireless networks: we can solve
the Maxwell equations (in a time-stationary case, the simpler Helmholtz
equation might suffice) for each electromagnetic wave carrying the signal
of the base stations in predetermined locations, and determine the signal
propagation properties in a given environment at a receiver at a given
location. In the lack of full information, we can also utilize stochastic
2The term “the typical city” tacitly refers to a (here, unrealistic) assumption that
the rain r.v.’s are identical and independently distributed (i.i.d.) in each city. We
will return to this concept later in the context of stationary p.p. in the form of the
typical point.
3The rainfall statistics serve as an example and are not intended to be precise.
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Maxwell equations that impose randomness into the scope of the model.
Even though the Maxwell equations are linear, i.e., we might be able to
avoid the chaotic behavior (unless we take the properties of the conducting
materials involved seriously), solving such models is time-consuming and
lacks general insight. Hence, possibly based on models involving partial
differential equations or empirical measurements, we may use simpler
statistical models. For example, one might observe that “the base station
(BS) locations follow the Poisson point process (PPP) and their signal powers
follow an exponential distribution after the random propagation.” The
mentioned random fluctuation of the signal powers caused by the random
propagation is often referred to as the fading. As with the weather example,
the statistics can depend on the spatial and temporal resolution: for example,
the locations of two distinct transmitters become indistinguishable from
the perspective of a radio wave receiver within the scales of the coherence
length, which is proportional to the second exponent of the wavelength,
reflecting the distance within which the fading of the two signals are strongly
correlated.
It is crucial to recognize the limitations and choose the appropriate model

and meaningful performance metrics. For example, the distribution of the
instantaneous received signal waveform is not the same as the distribution
of the average signal over a time window, or a use period. This distinction
becomes clear if the instantaneous power of additive Gaussian white noise
(AWGN) is contrasted to its average power over a time window, which is
a constant. Both metrics are relevant, depending on the application. The
mentioned exponential fading model corresponds to the Rayleigh fading
model, which is typical of, say, cellular urban networks, lacking any line-
of-sight (LoS) connection between the BSs and their served transmitters,
and all components of a signal arrive at the receiver through multipaths in
random phases. In such an urban scenario, the PPP locations of the BSs
have been shown empirically to be feasible in large cities, e.g., in Sydney
[52].
Through the point processes (p.p.), we are drawn into the realm of stochas-

tic geometry. Stochastic geometry studies random geometrical structures,
which exhibit stochastic behaviour. At the heart of stochastic geometry
are, indeed, the p.p.’s, which generate random spatial patterns, including
random tessellations or graphs representing cells and connectivity in com-
munication networks—such as spatial phenomena like the random structure
of human tissue or, for example, a rock. In one dimension, the spatial notion
is often replaced by time, such as in queuing theory models. While the
temporal dimension can be introduced in higher spatial dimensions, we
concentrate on spatial point processes. The PPP represents “complete
spatial randomness”, which can be made mathematically precise by Palm
conditioning but has the clear intuition that the points are independently
located: one cannot draw any additional information about the position of
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a point from knowledge of the position of another point, or several points.
The concept boils down to the exponentially distributed distance between
each pair of the nearest points, which have the key property of beingmemo-
ryless. These kinds of phenomena exist all over the world, not restricted to
“natural” processes. These include radioactive decay, grocery store queues,
the locations of the water drops in a paddle, and, indeed, the locations of
the base stations or mobile phone users in a cellular network. However,
as with almost every random phenomena modeled by the PPP, it is merely
an approximation that hold up to certain scale: the people are more likely
to choose a queue with less people in it, two water drops merges into one
another if succiciently close, and the mobile phone devices or base stations
are not arbitrarily close to each other in the real-world (sensical) scenar-
ios. As such an approximation, the PPP is analytically most tractable and
well-studied. (The statistical independence, in fact, simplifies the analysis
in many cases, not only in the case of stochastic processes, but generally in
probability theory.) Unless we have an explicit description of the underlying
laws that make a p.p. non-Poisson, introducing a correlation structure in
the point process can be inappropriate, and the PPP is the best initial guess.
Furthermore, in the context of wireless networks, random attenuation of
signals and independent mobility patterns can cause a point process to
exhibit Poisson statistics, even though the initial process is not PPP (see
Section 2.5.1).

1.3 Stochastic geometry analysis and wireless networks

In this section, an overview of the use of stochastic geometry in the mod-
eling of communication networks, including the most relevant works and
results related to the articles included in this thesis, is provided. We present
a historical glimpse of the stochastic geometry works on interference char-
acterization, SINR, and throughput in terrestrial wireless systems. The
terrestrial networks are included for comparison and as a necessary basis
for the stochastic geometry study of the LEO networks. In this section, we
present the most relevant novel results proposed in the included articles
and other state-of-the-art stochastic geometry studies regarding the LEO
networks.

1.3.1 Stochastic geometry analysis of LEO networks

In recent years, the number of works on the stochastic geometry analysis
of the LEO networks has been published at an increasing pace. The reader
can find an extensive literature review on the most relevant papers in the
publications attached to the end of this thesis. Here, let us take a brief
overview of a couple of them.
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1.3.2 Stochastic geometry analysis of Terrestrial networks

The modeling of the interference and analytical study of the interference
using the PPP dates at least back to the seventies and David Middleton’s
seminal work on the subject [61]. He derives distributions for the enve-
lope of electromagnetic interference in three different scenarios that are
characterized by the impulsiveness of the interference. These distributions
are referred to as Middleton class A, B, and C distributions. The class A
distribution represents interference that occurs if the interference source is
narrow-band w.r.t. the receiver and there are “gaps in time” in the envelope
(after the receiver’s ARI filter stages), class B repents the interference of
a broadband case, and class C is a combination of the classes A and B. In
both classes, the interference is characterized by its “impulsivity”, Gaus-
sian waveform statistics and Rayleigh distributed envelope being at the
lower end regarding the impulsivity. An essential analytical and empirical
observation is that, indeed, the interference does not always have Gaus-
sian form—even in the case of an infinite number of interference sources,
when one could first expect that the conditions (sufficiently, the Lindeberg’s
condition [57]) for the central limit theorem would hold.

Figure 1.1. Gaussian analog baseband waveform.

One of the more recent studies where the PPP is used to model the lo-
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Figure 1.2. Impulsive analog baseband waveform.

cations of interferers to characterize the interference waveform is [39].
Assuming signals with finite expected amplitude and singular path loss,
the in-phase and quadrature components of the interference waveform are
i.i.d. and follow the α-stable distribution [73] with the parameter 0 < α ≤ 2,
depending on the path loss exponent. While α = 2 corresponds to the Gaus-
sian distribution, for α < 2, the interference waveform is “heavy-tailed”,
having infinite variance. Furthermore, the mean of the α-stable distribu-
tion is infinite for α < 1, corresponding to severely impulsive interference.
Similarly, in [28], Gaussian, Middleton class A, and α-stable distributions
are compared in approximating the interference in cellular networks with
various topologies, the interferers located either on the entire plane R2,
inside a finite-area annular region or outside a finite annular region (i.e.,
there is an exclusion zone around the receiving transmitter). The α-stable
distribution formulation is exact in the first case, whereas, in the latter two,
the Middleton A model approximates well (at least) the tail distribution—
this draws a picture of impulsive interference waveform characteristics
even with the exclusion zone around the receiver, as the tail decay rate of
the Middleton class A distribution is between the Gaussian and α-stable
distributions. In the terrestrial networks, the α-stable waveform is due to a
singular path loss with no exclusion zone between the interferers and the
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receiver. The interference in an infinite planar model was proposed in the
entire plane, in a disc, and in an annular area outside a disc, as presented in
[8], [28], and [34]. [28] showed that the interference waveform can exhibit
impulsiveness even if we assume a minimum distance between the receiver
and the interferers.
A gamma distribution approximation for the interference power was used

in [34] using an exclusion zone. In [32], it was observed that the gamma
distribution and inverse Gaussian distributions are a good fit in modeling
the interference power in the case of non-singular path loss under Rayleigh
fading. With singular path loss, the interference power distribution has a
heavy tail for the power path loss exponent strictly larger than 2.
As noted, the interference does not generally follow Gaussian statistics:

the interference distribution’s tail decays significantly slower than what
corresponds to a Gaussian waveform (or to the two-dimensional Gaussian
distributed complex baseband signal representing the in-phase and quadra-
ture components of the signal modulation, for example, in ASK, PSK, QAM,
FSK, APSK, or BPSK). The topology of the domain of interferers and the
receiver’s response function affects the interference quality. In particular,
if the interferers can be arbitrarily near the receiver with a singular path
loss function, the interference waveform, envelope, and (average) power
distributions exhibit heavy tails for the power path loss exponent γ > 2.
Furthermore, the fading and shadowing contributes to the interference
characterization.
Gaussian and impulsive α-stable baseband waveforms S(t) with similar

signal powers
∫︁ 1
0 |S(t)|2dt are plotted in Figures 1.1 and 1.2, respectively.

The signal envelopes derived using the Hilbert transform S(·) ↦→ H(S)(·)
[80] are depicted in the figures representing the absolute value of the
analytic signal S(t) + iH(S)(t) ∈ C. In 1.1, the waveform S(t) is Gaussian
distributed, the envelope |S(t) + iH(S)(t)| is Rayleigh distributed, and the
instantaneous signal power |S(t) + iH(S)(t)|2 is exponentially distributed.
The process of the main lobe gains of the UEs at the typical narrow-beam

LEO BS, i.e., the gain process (GP) (first proposed in Publication III), as an
analytically tractable framework for acquiring insights also on the waveform
of the interference in the LEO networks.

1.3.3 Contributions

Is the Gaussian prior a reasonable prior interference model or
not?

This is one of the questions we give an enlightened answer to.
The novel contribution of this work is a narrow-beam LEO uplink with

Poisson distributed Earth transmitters. The narrow-beam (which is re-
alistic, considering the actual LEO networks) assumption simplifies the
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system model and enables analytically tractable stochastic geometry analy-
sis. While some of the expressions are complicated, we produce strikingly
insightful and intuitive results; for example, the SIR has a characterization
as the Lomax distribution, leading us into the realm of heavy-tailed distri-
butions and even power laws. Furthermore, as stated, the non-Gaussian
statistics are common in the earlier stochastic geometry studies (on the
terrestrial networks). However, due to differing topology, this does not
apply to the LEO networks (as far as it goes in the proposed stochastic
geometry model). These findings are not just mathematical artifacts. The
statistical properties have practical implications, for example, on the likeli-
hood function in Bayesian inference, which plays a crucial role in modern
ML and AI-aided signal processing. The stochastic geometry analysis of
the LEO networks reveals how the quantitative and qualitative statistical
characteristics arise from the properties (topology, density, fading, etc.).
This thesis provides a novel framework for the design of future dense LEO
networks.

1.4 Suspicions

As pointed out, the main topic of the thesis is in mathematically oriented
technical analysis and signal processing. However, before we delve into
the kernel topics of the thesis, let us take a brief look at the topical social
and environmental challenges (and solutions) that the LEO networks, and
ICT in general, face. As of 2025, from a mobile phone end-user perspective,
the LTE (or 4G) network performs (almost) as well as 5G in video and audio
streams and calls. Practically, this applies to all typical modern use cases—
possibly with the exclusion of real-time online gaming. (At least I am happy
with my 4G phone, and I have no plans to upgrade the subscription or the
device in the near future as long as the operators support the hardware.)
Perhaps this is the reason why some people have taken the suspicion of
new cellular network technologies to the level of physical outrage towards
the 5G base stations in Great Britain, the Netherlands, Sweden, and even
Finland [51]. Apart from being a money-making machine, an idealistic
world-bettering pursuit, and at least an exciting engineering challenge,
modern information and communications technology (ICT) systems raise
multiple concerns regarding sustainability, health, and privacy.

1.4.1 Privacy

Furthermore, in authoritarian-inclined countries, such as China or Russia,
the improved connectivity is engaged in Orwellian-like surveillance, pro-
paganda, and censorship. Neither are the democratic countries protected
against information warfare, neither from outside the border nor within.
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Apart from foreign attempts to influence public discourse, ICT giants, such
as Google®, Apple®, and Meta®(formerly Facebook®), have an incentive
to gather as much information as possible about their customers. The latter
security problems have been recognized by, for example, the European
Union (EU), which has implemented numerous restrictions for the com-
panies [21]. There are some options for these services, essentially based
on open (or free) source, relying on crowdfunding, such as Signal®and
Librem®, of which the latter has a respectable mission to provide ambi-
guity and uncompromising security across both the smartphone, tablet,
and laptop software and hardware [68]. Unfortunately, these products
are currently left in the margin, and cannot seriously challenge the status
quo of the more commercially driven companies. In fact, arguably, the
ICT companies have become more powerful than most national states [54].
Some authors go as far as claiming the new era of techno feudalism [82].
Although one might argue that attempts are being made to improve security
in proprietary platforms, such as WhatsApp®, have been addressed, their
use for the most sensitive messaging is not advised [81]. To the best of
my knowledge, no convincing reason exists for the use of this proprietary
software other than its popularity.
Further, a privacy challenge, which will be increasingly important in the

near future, is quantum cryptography. In this regard, quantum technologies,
including post-quantum cryptography, are also being widely implemented
in the NTNs [37].

1.4.2 Environment and space sustainability

The 5 systems are power-hungry. The carbon emissions from the ICT in-
dustry have been steadily growing and globally contributed 2 percent by
year 2012 of the total greenhouse gases (GHG) with a GHG footprint close
to 55 GtCO2e [79] by year 2020. This issue has been well-recognized in
the academic literature, and ideally, energy efficiency is taken as a serious
performance metric in the design and practical implementation of commu-
nication networks. Energy efficiency can be improved by technologies such
as multiple-input and multiple-output (MIMO), which enhance the quality
of service (QoS) by increasing the number of antennas instead of the trans-
mission power [38]. Furthermore, beamforming, such as reconfigurable
phased array antennas and multibeam architectures, can reduce power
consumption in LEO networks [37].
By definition, space debris is non-functional man-made objects that orbit

the Earth. In the LEO networks, in addition to the aesthetic effect on the
night sky (which potentially has hundreds of light dots, ruining the night
sky, and even posing challenges to terrestrial astronomy), space debris
poses a challenge as the constellations scale up in size. While there are
guidelines by the United Nations (UN) and European Union (EU), as well as
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by individual countries, such as Finland, a functional international debris
management system is yet to be established [37].

1.4.3 Health

High energy radiation is harmful in excess; however, 5G base stations
are not likely to cause health harms as long as the potential risk is taken
seriously [25]. The high frequency means that the signals are prone to sig-
nificant attenuation. Platforms, such as TikTok®or X®(formerly, Twitter®),
have led to fragmentary information delivery driven by black-box algorithms
meant by construction to be addictive, causing political polarization and
personal problems, such as anxiety and depression [49]. Recently, the me-
dia has reported how, at least in the Western world, people are increasingly
dependent on their phones. While, say, twenty years ago, people hardly
had mobile phones before high school, in this era, the children master
sweeping and scrolling before they exit kindergarten [75]. Human kind is
still adapting to the new era of chronic mobile phone use, and the effects
on the mental faculties are to be taken seriously.
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2. LEO System Modeling

Two distinct spatial models are considered for the mathematical analysis
and the Monte Carlo simulations, respectively:

• planar system model,

• spherical system model.

In the planar system model, the Earth is modeled as an infinite and flat
plane R2. In the spherical system model, the Earth is modeled as a sphere
of radius R⊕ = 6378 km.
As the link-level model, we consider narrow-band transmission during a

short period of use consisting of single or multiple coherence time blocks,
during which multiple symbols are transmitted, and random fading attenu-
ates the signal between encoded blocks. We usually consider high-frequency
transmissions, and the coherence time is relatively short, and the LEO BS
and the UEs are considered spatially stationary during a single period of
use.
The system model is from the perspective of the typical LEO BS at the

elevation angle ϵ. This typical LEO BS represents all LEO BSs in a uniform
constellation: the approach is justified by the stationarity of the PPP of the
UEs. The Poisson layout follows from the independent mobility patterns
(see Section 2.5.1). The satellite’s antenna is steered toward a location
on the Earth surface, considered the nearest focus point of the elliptical
footprint (more precisely, a footprint contour, e.g., the −3 dB footprint). The
requirements for the constellation in which the typical LEO BS belongs are
that the constellation consists of at least hundreds of satellites and that it is
homogeneous (or uniform)—at least in a local sense (physically, hardly any
constellations are strictly uniform—especially the constellations consisting
of polar orbits). Numerous large LEO constellations have been studied
within stochastic geometry, including the well-recognized Walker-Delta and
Iridium (see the literature review in Publication III) constellations. However,
in this thesis, I skip further study since the proposed analysis is independent
of such orbital details of the constellations.
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Both the planar and the spherical system model frameworks are inter-
preted under the conditions

1. the UEs have omnidirectional antennas,

2. the LEO BSs have narrow Gaussian antennas,

3. the UEs have independent locations and mobility patterns,

4. the LEO BSs form a (at least locally) uniform large constellation, and

5. transmissions are non-correlated and narrow-band.

As indicated in [2], multiple implementation schemes are possible for the
LEO; the LEO BS footprint is large and hence can include multiple UEs; at
least intercell interference is likely to be present. Interference-mitigation
techniques are, to a varying extent, a trade-off between the achievable
data rate and system complexity. Exhaustive standardized schemes for
interference mitigation are yet to emerge. Furthermore, because effective
beamforming for mobile phones does not yet exist, the proposed system
model abstraction of independently located UEs with non-directional UE
antennas is justified. In the discipline of stochastic geometry modeling
of the NTN, as of today, it is arguably the natural system model when
considering the hand-held UE-LEO BS terminal communication in the NTN.
The proposed system model yields straightforward analysis and meaningful
insights regarding the narrow-beam LEO performance metrics.

2.1 Antenna beams

2.1.1 Earth transmitter antennas

The Earth transmitter terminals, UEs, are cellular phones, also referred
to as mobile phones or smartphones. Such UE-LEO BS NTN systems are
under active development. For example, 3GPP aims to adapt existing
satellite and terrestrial networks to provide direct connectivity from hand-
held equipment to LEO satellites using frequencies assigned to mobile
satellite services or those assigned to legacy terrestrial networks [2]. In
such mobile phone user terminals, beamforming signal processing faces
multiple practical and theoretical challenges: it is computationally complex
and power-hungry, and also requires sophisticated hardware. While at least
rough beamforming towards the desired satellite can well be feasible, as
of today, it remains unclear to what extent we can mitigate interference
leakage towards undesired directions and with what effort such technology
will reach hand-held mobile devices. Hence, it is sensible to assume that
the UEs radiate in all directions in the sky. In this regard, although not
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entirely physically realistic, the constant antenna gain model is a widely
used approximation of omnidirectional antennas.
The UEs transmit omnidirectionally with equal signal powers and cause

an additive response (undesired signals are interference) at the typical
LEO BS. In the case of interfering UEs, they operate in the same frequency
band using non-orthogonal polarization modes and signal modulation, nor
are any similar interference mitigation methods implemented (prior to the
processing of the aggregate signal).

2.1.2 Satellite base station antennas

The LEO BS antenna is modeled with a Gaussian beam: this represents the
main lobe of general antenna gain patterns. In simulations, the value φRX =

1.6◦ is used, corresponding to the LEO antenna pattern proposed in the
International Telecommunication Union Recommendations (ITU-R) [40, ITU-
R LEO reference radiation patterns]. The analysis is not restrictive for the
antenna beamwidth as long as the beam is sufficiently narrow. Despite being
an idealized antenna pattern, the Gaussian response accurately models the
main lobe (−10 dB lobe) of many antenna patterns, particularly the ITU-R
pattern, cf. Figure 2.1 (we omit the explicit definition of the gain here): this
works as long as the UE density is high enough and the served UE is likely
to be in the main lobe. A plot demonstration comparing a realistic LEO BS
ITU-R antenna beam and the Gaussian beam is given in Figure 2.1.
The antenna gain G[·] : [0,∞) → (0, 1] is assumed to be Gaussian, i.e.,

G[φ] = 2−φ2/φ2
RX = e− log(2)φ2/φ2

RX , (2.1)

where φRX is the halfwidth of the −3 dB antenna gain.

Sidelobe modeling
Unless otherwise stated, the thesis assumes a Gaussian antenna pattern
model for the LEO BS. However, analogously to the semi-analytical sim-
ulation methods [31], the possible aggregate signal component from the
sidelobes can be modeled as additive white Gaussian noise (AWGN) with
constant power (a validation for the Gaussian waveform statistics can be
deduced from the forthcoming Theorem 3.4.4). The variance in the power
(the “power” understood as the variance of the waveform during a use pe-
riod) of this term is negligible compared to that of the total received power
received from the main lobe (−10 dB). Hence, this sidelobe power can be
modeled as a constant by averaging over the use periods (to be precise, over
the realizations of the PPP). The sidelobe average power can be derived
theoretically or simulated, although we do not explicitly present it here. The
constant sidelobe total received power modeling has benefits in simplifying
the analysis while achieving good realism. Furthermore, many results in
the thesis involving noise are generalized, which can now be interpreted to
include the sidelobes or a combination of noise and sidelobes.
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Figure 2.1. Comparison between the Gaussian and ITU-R LEO reference radiation
pattern. The gain of the Gaussian antenna in the main lobe (−10 dB
lobe) is almost identical to the ITU-R main lobe. However, there
is a slight difference towards the edges of the main lobe. The fast-
decaying Gaussian beam essentially corresponds to the main lobe
component.

Please find Figure 2.2 for a comparison of the complementary cumulative
distribution (CCDF) derived from the theory and Monte Carlo simulation
of the ITU-R antenna incorporating the sidelobes. The elevation angle
of the satellite and altitude are ϵ = 90◦ and h = 1200, respectively. The
average number of transmitters inside the −3 dB footprint is κ = log(2).
Rayleigh fading is assumed for convenience, and the non-shifted theoretical
distribution is the exponential distribution, as will be later observed in
Corollary 3.3.4.

Alternative interpretations
There are at least the following two possible interpretations for the model.

• The LEO BSs have omnidirectional antennas, and the UEs have direc-
tional narrow Gaussian antennas.

• The UEs can have efficiently directional antenna beams (such as
disc antenna terminals), and the “omnidirectional” antenna patterns
represent constant side lobes of the interfering UEs, each steered at
their serving LEO BSs. In this scenario, the interference originates
from these sidelobes.

However, in this work, the simulations are performed by modeling the
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Figure 2.2. The CCDF of the theoretical total received power (by convention,
usually referred to as the total interference power in the thesis)
from a transmitter located according to the PPP. The plot depicts
the theoretical (planar model) versus simulated (spherical model)
distributions. The simulation uses the ITU-R antenna with realistic
sidelobes. The sidelobes are modeled as constant noise, additive to
the total received power of the main lobe component, shifting the
theoretical power distribution to the right.

scenario as described in the section.

2.2 Spherical system model

The Monte Carlo simulations in Publication III-Publication IV are based
on the model of this section (apart from an ITU-R antenna is modeled in
Publication IV instead of the Gaussian antenna) . The analysis utilizes the
planar model introduced in Section 2.3 and approximates the spherical
model presented in this section. Publication I utilizes the MATLAB®satellite
toolbox for the simulations, but we omit its implementation details.
A short period of use (such as a symbol block) over a single or multiple

fading and/or shadowing coherence times in a narrow-band and narrow-
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Figure 2.3. A sketch of the spherical narrow-beam LEO uplink model is illustrated
in the MATLAB®satellite toolbox. Please note the small relative scale
of the −3 dB footprint: In the figure, the distances to the interfering
transmitters are exaggerated for clarity; however, in practice, dh,ϵ ≈
dx for all relevant transmitters.

beam terrestrial-satellite link in a single-tier network is considered. The
link quality from the perspective of a LEO BS is investigated. For the Monte
Carlo simulatedmetrics, we assume that UEs with omnidirectional antennas,
such as mobile phones, are randomly located on the Earth surface according
to the PPP. The simulations utilize a spherical Earth model of a radius of
R⊕ = 6378 km. The serving satellite is at the altitude h and elevation angle
ϵ w.r.t. the Earth transmitters. The studied performance metrics, such as
the SIR and SINR, are mediated by additive noise and interference from the
UEs that are not being served by the LEO BS. The interference is essentially
treated as additive noise. The LEO BS can work as an independent network
or complement a terrestrial network, and the interfering transmitters can
be considered to be within the same cell, adjacent cells, overlapping cells,
or part of a terrestrial network served by a terrestrial BS. The SBSs form a
homogeneous point pattern (deterministic or random), allowing the ergodic
interpretation of performance metrics over the SBSs. The LEO BS antennas
are narrow-beam Gaussian beams considered to serve a local homogeneous
environment, such as a rural or urban area. Consequently, the scattering
and attenuation caused by the weather conditions and Doppler shifts are the
same for all relevant UEs, thus not affecting their relative signal strengths
at the LEO BS. (However, such models can be incorporated in the analysis
through an additional random attenuation variable.) Linear additivity of the
average signal powers during the use period is considered, requiring that
the separate signals are not mutually correlated, i.e., the cross-correlation
is close to zero. Some of the crucial spatial metrics of the spherical model
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and the related geometrical relations are presented in Figure 2.4 and
equations (2.2)-(2.3), respectively. The results are traditional geometry and
are well-established in the literature.

oE

dh;0

R) + h
R)

SBS

Sub-satellite point

9

0

Figure 2.4. Sketch of the geometry of the spherical model. N.b. the terminology:
the SBS is the LEO BS.

See Figure 2.4. Directly from the law of cosines,

dh,ϵ(ξ) =
√︂

R2
⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ). (2.2)

Furthermore, one may derive the relation between ϵ and ξ: The law of
cosines states that

(R⊕ + h)2 = dh,ϵ(ξ)
2 +R2

⊕ − 2dh,ϵ(ξ)R⊕ cos(π/2 + ϵ), (2.3)

which is analytically solvable for ξ.

2.3 Planar system model

Definition 2.3.1 (Plane). The word “planar” refers to the entire two-
dimensional Euclidean space R2 or to a two-dimensional subset of it. In the
context of Publication III and Publication IV, as well as the analysis of the
thesis, including this section, the concept refers to R2.
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The planar model essentially consists of the Earth modeled as an infinite
plane, a narrow Gaussian antenna beam, and spatial path loss approximated
as equal for all transmitters (c.f., Figure 2.3). A rigorous derivation of the
model is presented in Publication III. The UEs form a homogeneous PPP
Φ ⊂ R2 of density λ. A demonstrative plot of an uplink interpretation, with
the served UE as the nearest transmitter, and crucial geometric calculation
of the spatial distances and antenna gains of the UEs and the typical LEO
BS, is as follows. The calculations refer to Figures 2.5a-2.5b.
The values of h and ϵ determine the distance to the satellite, given by the

geometric relation
d̂h,ϵ ≜ h/ sin(ϵ). (2.4)

In this work, we focus on LEO altitudes of h ∈ [200, 2000] km. We will
consider that ϵ ≥ 35◦, which is the minimum elevation angle proposed in
[5].
The approximate spatial path loss in the planar model is

ℓ(d̂h,ϵ) ≜ (d̂h,ϵ/d0)
−γ , (2.5)

where d0 is a normalizing distance addressing the dimension of d̂h,ϵ.
For each angle φx between the transmitter x ∈ Φ and the typical SBS

antenna boresight,
φx ≈ Dh,ϵ∥x∥, (2.6)

where Dh,ϵ ≜ sin2(ϵ)/h is the derivative of the function ∥x∥ ↦→ φx at ∥x∥ = 0.
(2.6) is the first-order Taylor expansion of φx at ∥x∥ = 0; the approximation
is sufficient if the antenna pattern decays fast for large φx. Since {x} lies
on the plane, the analysis essentially reduces to planar stochastic geometry
inquiry, which is a well-established area widely studied in the literature.
Hence, many mathematical results are enabled for use.
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(a) Interpretation of the planar system model with the SBSs in adjacent orbits serving an
urban area and a realization of the UEs. The altitudes are not to scale (the scale is

illustrated in Figure 2.3). N.b. the terminology: the SBS is the LEO BS.

(b) The typical SBS as seen from the side. The transmitters are projected into line (0,∞)

according to their norm.

Figure 2.5. The simplified narrow-beam LEO uplink system model. The SBS an-
tenna boresight is oriented towards o, the focus point of the elliptical
footprint. The omnidirectionally transmitting UEs {xi} are located
according to the HPPP on the plane. Here, the nearest transmitter,
x1, is the served UE. N.b. the terminology: the SBS is the LEO BS.

41



LEO System Modeling

2.3.1 Planar model vs. spherical model

The planar stochastic geometry models of wireless networks are well-
established and studied in terrestrial models in hundreds or thousands
of papers. Furthermore, multiple works on planar stochastic geometry
modeling involving unmanned aerial vehicles (UAV) have been proposed in
the literature. This section focuses on the LEO networks, particularly on
the narrow-beam LEO, which is the main focus of the thesis.
A planar model was successfully used in Publication I (although this was

a pure accident, as the author forgot to incorporate the appropriate scaling
factor that would have mapped the integral onto the sphere), and the
interference modeling corresponds well to the Satellite ToolBox simulations
in MATLAB®. In Publication I-Publication IV, the planar models were
(intentionally) used to simplify the analysis. An extensive literature review
can be found in [85]; the paper also presents a rigorous study on planar
versus spherical models, and proposes that the planar LEO model is feasible
with antennas narrower than 7.5◦; this is well wider than φRX = 1.6◦, which
is a standard in the thesis (and proposed by the ITU-R). Comparison and
validation of the planar model for narrow beams are also presented in
Publication III with demonstrative plots. To the best of our knowledge, the
work in this thesis is the first to combine the planar model with the narrow-
beam Gaussian antenna pattern (representing the main lobe). This provides
a lubricative mathematical analysis and insightful results while maintaining
realism. In the orthodox LEO modeling approaches, simple results may
be possible with a boxcar-type antenna pattern; however, with a realistic
antenna pattern, the analysis facilitates, to the best of my knowledge,
complex representations of the performance metrics that are laborious to
evaluate and, in our opinion, contain little insight. The thesis aims for clarity
in the derived expressions: The Gaussian antenna pattern and infinite planar
model aim to resolve the complexity issue in the analysis of the stochastic
geometry LEO models.
Let us make a back-of-the-envelope calculation for illustration. See Figure

2.6 (note that the distances or the angles are not in scale. We consider that
the SBS is at the zenith, i.e., its antenna lobe is steered directly toward the
Earth’s center. We study the curvature within the main lobe by considering
the differences between d1 + d2 and d2, which represent distances to the
LEO BS from the edge of the −10 dB footprint in the spherical and planar
models, respectively. It is straightforward to see that the −10 dB angle is
given by φml = φRX

√︁
log2(10), where φRX is the width of the −3 dB lobe

(recall the definition of the Gaussian antenna in (5)). We can use the law of
cosines to derive

d1 + d2 = (h+R⊕) cos(φml)−
√︁

(h+R⊕)2 cos2(φml)− h(h+ 2R⊕), (2.7)

where R⊕ = 6378 km is the mean radius of the Earth, i.e., the radius of the
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Earth in the spherical model.
On the other hand, by basic trigonometry,

d1 = h/ cos(φml). (2.8)

Let φRX = 1.6◦. The largest curvature is for the largest altitude; hence, we
consider h = 2000 km. We have d1 + d2 = 2003.4 km, d1 = 0.81 km, and
d2 = 2002.6 km. The distance d2 from the plane representing the planar
model of the Earth is d2/(d1 + d2) · 100% = 99.96% of the distance d1 + d2
to the sphere. In this regard, we may argue that the curvature within the
main lobe footprint is negligible. Having d1 + d2 ≈ d2 ≈ h also clarifies why
we can approximate the spatial path losses to be equal for all transmitters
with the narrow beam.

Figure 2.6. The distances d1 + d2 and d2 to the edges of the footprints (deter-
mined by the angle φml, i.e., the −10 dB angle, w.r.t. the boresight)
in the spherical and planar system models, respectively. N.b. the
terminology: the SBS is the LEO BS.
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2.4 Satellite (LEO BS) locations

Throughout this section, we consider the planar system model unless other-
wise stated.
When we refer to the “satellite constellation,” it means uniformly located

points on the plane (planar model) or on the sphere (spherical model)
(“uniformity” is a vague concept on the plane; hence, to be more precise,
we can assume that the constellation is a PPP in the planar model). The
constellation can be a regular point pattern or, for example, a homogeneous
PPP, as long as the “density” of the points remains spatially invariant and
there is no clustering.The (infinite) uniform constellation represents, in
a local sense, the spherical constellation orbiting the Earth. As of today,
many p.p. models for the LEO constellations have been proposed in recent
years, and the binomial p.p. and the homogeneous PPP have shown through
Monte Carlo simulations that both satisfactorily represent the statistics
of a deterministic constellation as the satellites move w.r.t. the Earth
transmitters (see, e.g., [3], [36], [42] and Publication I). Particularly, with
multiple layers of constellations, the regularity of the relative satellite
positions can lead to spatially independent-like behavior.
The uniformity is the only requirement for the constellation in the inter-

pretation of the stochastic geometry NTN model of this thesis. Other than
that, the constellation characteristics are irrelevant to this work. In the
practice of the analysis, the typical LEO BS is considered to be located at
a definite point on the plane (or more precisely, its sub-satellite point is
located in the plane representing the Earth surface). We will unravel the
uniformity requirement in the following section.

2.5 User equipment (UE) locations and interference

The Earth transmitters, or user equipments (UEs), are located on the Earth
surface and have no interaction with each other, i.e., they are independently
spatially distributed. Further, their density remains constant. Hence, the
UEs follow the homogeneous Poisson point process (PPP). The UE layout
under the typical LEO BS is a random point realization of the PPP. Further,
the PPP is ergodic on the plane and approximately ergodic on the sphere
(see Section 3.2.2 for the exact definition); i.e., the spatial average—or
the average over the LEO BSs in the uniform constellation—equals the
ensemble average at the typical LEO BS. The statistics of the typical LEO
BS have the interpretations as

• the statistics during a single use period—during which the LEO BSs
are practically non-mobile—over all LEO BSs in the constellation
serving a deterministic layout of UEs,
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• the statistics over multiple use periods at the typical LEO BS as the
LEO BS move over a deterministic layout of UEs (performing han-
dovers on the served UEs),

• the statistics over multiple use periods at the typical LEO BS—during
which the LEO BS is practically non-mobile—and UEs independently
sequentially either transmit or are quiet (e.g., ALOHA), and

• any combination of these.

Figures 2.7 and 2.8 depict two statistical interpretations of the system
model, as proposed in [2]. In Figure 2.7, the typical satellite is moving
over a deterministic Poisson realization of transmitters. In Figure 2.8, the
co-channel UEs are considered to form the PPP. We will categorize the
interference into intracell plus intercell and intercell interference (only
intercell co-channel interference is present in the figure).

Figure 2.7. The model interpretation as the satellite moves over a deterministic
layout of UEs [2, Figure 7.3.2.1.6-1].

2.5.1 Incarnation of the homogeneous Poisson point process

It is not self-evident why we use the homogeneous PPP in the system model,
and not something else. One of the most important reasons is that it is
analytically highly tractable. Second, the PPP is a natural point process
that arises in various contexts, such as independently located hand-held
UEs with independent mobility patterns, as will be argued in this section.
I would go so far as to claim that, should there be no prior information,
other than the density of the transmitter locations, which might be moving
or not (density as the average number of transmitters per unit area), the
PPP is the best guess for the (non-temporal) location characteristics. (In
a bounded domain, the binomial process might not be a bad choice either,
although it postulates the exact total number of transmitters.) The PPP
can be defined in Euclidean space of arbitrary dimension or on a manifold,
for example, on the surface of a sphere. Randomizing the density is the
Cox process, which is a close relative of the PPP. However, in this work, we
concentrate on the homogeneous PPP.
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Figure 2.8. Themodel interpretation when the UEs are randomly appearing inside
the intracell (reference beam) and the interfering cells (interfering
beams) [2, Figure 6.1.3.2-2].

Regarding the Earth transmitters, the Poisson assumption can be justified
by the independent mobility patterns of UEs. Furthermore, the multipath
fading of the signals can make an arbitrary network seem Poisson at the
receiver [18, Sec. 4.3]. The PPP is analytically most tractable and has
been used in related papers. Furthermore, it has been established that
the process after randomly displacing all points (the displacement can, for
example, be incorporated to represent the impact of fading or mobility)
in a non-Poisson process approaches Poisson after many displacements,
[22][R-4, Chapter 11, Section 4: Convergence Concepts and Limit Theorems,
Random Translations], or even for a single displacement [18, Chapter 4,
Section 3: Networks Appear Poisson Due to Random Propagation Effects];
in this sense, the PPP is a universal point process. It has a special role in
the structural theory of point processes: Like the normal distribution in
the theory of probability distributions, the PPP is an attractor in the point
process theory. As such, it is the maximal entropy point process, towards
which systems develop.
Please see Figure 2.9 for a demonstration: A generation of a two-dimensional

Poisson realization is demonstrated in Figs 2.9a-2.9d. Starting from the
regular layout, each point is randomly moved a fixed distance in a uniformly
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distributed direction. While remnants of the initial spatial correlation ap-
pear in Figure 2.9c (the points are still somewhat mutually repulsive), Figure
2.9d already exhibits complete spatial randomness, which is a characteristic
feature of the PPP.
As already noted, regarding satellite constellations, it has been repeatedly

shown in the literature that the PPP and binomial p.p. model adequately
determine dense LEO constellations. As of today, the trade-off between
simple analysis and realism has been widely in favor of choosing analytically
tractable p.p. in the stochastic geometry models of LEO networks. This is
the case even if all satellites part of a deterministic uniform cancellation are
serving transmitters for which the satellite is in the zenith. In this regard,
randomly steered antenna beams increase the randomness of the footprint
locations on the Earth: Even though the constellation would be regular,
the footprint locations are not if they are steered to random directions at
random elevation angles.

2.6 Monte Carlo simulation of the Poisson point process on the
plane and sphere

The PPP can be produced from the regular point pattern by randomly
displacing the points. However, this is not practical. A point realization is
simulated in a rectangle A = (−π, π)× (−1, 1) as follows.

1. Pick a Poisson variable N of a given density λ.

2. Produce N uniformly distributed points in A.

Furthermore, the points can be mapped into spherical coordinates by the
area-preserving mapping A ∋ (x, y) ↦→ (1, x, sin−1(y)).

2.7 Doppler shift, antenna attenuation, propagation delay,
coherence time, and multipath fading

In the LEO systems, one challenge is the high velocity of the satellites
that causes significant Doppler shifts affecting the frequencies and the
phases of the signals (however, the differences in the Doppler shifts of
the relevant main beam signals are small with narrow LEO BS antenna
beams). While there are stochastic geometry studies on the distribution of
the Doppler shift in LEO systems [[46], [4]]—to the best of our knowledge—
the analytical interference amplitude waveform characterization using
stochastic geometry has yet to be explored for LEO.
Since atmospheric, transmitter, and base station mobility, topological phe-

nomena such as Doppler shift, propagation delay, delay spread, dispersion,
as well as weather phenomena, etc., attenuate the signal at the receiver.
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Furthermore, in narrow antenna LEO communications, the narrow beam
suppresses signal strength temporally rapidly. In this section, we briefly
discuss the subjects, with some simple back-of-the-envelope calculations.
Empirical and theoretical research within LEO communications has been
extensive for well over twenty years, and the empirical propagation studies
of other satellite systems date back to the 1950s when the USSR launched
Sputnik. The theoretical models date even further. Instead of introducing
novel multipath fading and Doppler shift models, the main focus of the
work is the stochastic geometry modeling of the LEO communications. An
in-depth literature review of the propagation impairments in the signal
response in the LEO channel would deserve extensive work of its own.
More thorough satellite channel model references will be referred to in this
section.
The thesis explores the LEO channel attenuation phenomena numerically

and analytically through stochastic geometry analysis and Monte Carlo
simulations. We restrict the channel model to the following factors.

• Doppler shift,

• multipath fading,

• attenuation due to the narrow receiver antenna beam.
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(a) A regular grid of points.

(b) Randomly move each point to uniformly distributed directions.
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(c) Randomly move each point to uniformly distributed directions.

(d) The resulting layout approaches Poisson.

Figure 2.9. Emergence of a homogeneous PPP from a regular .
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2.7.1 Multipath fading and the non-temporal distributions

We concentrate on multipath propagation caused by obstacles, such as
buildings. Such multipath fading occurs especially in urban/suburban envi-
ronments, but also in natural environments. Propagation through multiple
paths causes the signal to arrive at the receiver in different phases; hence,
the signal interferes with itself and its magnitude fluctuates (in a random
way). Fast fading refers to small-scale signal attenuation that, according
to a definition used in this thesis, occurs within a timescale during which
all transmitters can be considered non-mobile, whereas shadowing is a
temporally longer-lasting phenomenon. Fast fading is a rapid change in the
signal strength (which is related to a change in its phase) that can fluctuate
during a short use period (but fluctuation can not be more rapid than the
transmission time of the smallest quanta of data: in digital communication,
called bits or symbols). In this context, Deep fades are occurrences when
the fading remarkably deteriorates the signal-to-noise ratio, making com-
munication practically impossible. On the other hand, fast fading signal
attenuation can also improve the data rate by amplifying the signal. In
LEO communications, the multipath fast fading attenuation is worth paying
serious attention to, especially at high carrier frequencies that are larger
than, say, 100 kHz.
Shadowing refers to a large (vis-à-vis the wavelength) object blocking

one’s direct visibility, i.e., the LoS path, to the desired receiver. On the other
hand, as with the fast fading, the “shadowed” signal can be amplified by a
spatially and temporally firm object (such as a mountain), which reflects the
signal in a favorable direction and works as a waveguide. This amplification
can be remarkable. For example, the log-normal shadowing models have
remarkably fat tails causing extreme power gain events to be an intrinsic
factor in the network performance.
Three important statistical fading models are as follows. The fadings

are referred to in terms of the distribution of the instantaneous envelope
amplitude.

1. Rayleigh fading (exponentially faded power),

2. Rician fading (noncentral chi-squared faded power),

3. Nakagami fading (gamma faded power),

4. Log-normal shadowing fading (log-normally faded power).

Let υ2 denote the power from the direct path and 2σ2 the power from the
(scattered) multipaths, respectively. Further, denote by Ω = υ2 + 2σ2 the
total power from both paths. The amplitude fast fading gain is modeled as
a random variable (r.v.) h ∈ (0,∞) (also denoted with g,H, etc.) that follow
the complementary cumulative distribution function (CCDF) for y > 0
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1.
P(h > y) = e−y2/(2σ2), (2.9)

2.
P(h > y) = Q1(υ/σ, y/σ), (2.10)

where Q1(υ/σ, ·) is the Marqum Q-function. The related Rician param-
eter is defined by K ≜ υ/(2σ2) or

3.
P(h > y) = Γ(m, y2m/Ω)/Γ(m), (2.11)

where m > 1/2 is the fading parameter, and Γ(m, ·) and Γ(m) denote
the gamma function and upper incomplete gamma function, respec-
tively.

Let µLoS, µNLoS denote the mean power, measured in dB, of the direct, line-
of-sight (LoS) and the non-line-of-sight (NLoS) paths, respectively. Further,
let σ2

LoS, σ
2
NLoS denote the respective variances. Conditioning or either path,

i ∈ {LoS,NLoS}, the attenuation of the power measured in decibels follows
the distribution 10 log10(h) ∼ µi + σ2

iN(0, 1), where N(0, 1) is the normal
distribution. Let ρ = log(10)/10 be a scaling parameter. The shadowed
power has a log-normal distribution with the distribution function

4.
P(h > y) =

1

2

[︃
1 + erf

(︃
ρµi − log(y)

(ρσi)2
√
2

)︃]︃
, (2.12)

where erf(·) is the error function.

The combined distribution of the LoS and NLoS components involves the
LoS probability pLoS and is defined as a mixture Gaussian distribution (see
Publication IV). Note that log(·) denotes the natural logarithm (as always).
Sometimes it is merely a matter of tractability, which fading model is the

most useful. In stochastic geometry models, the Rayleigh fading is usually
the simplest (also compared to the LoS channel) because the exponential
distribution function conveniently transforms the problems to the Laplace
domain. Furthermore, especially in broad system-level stochastic geometry
models (that describe averages over a sufficiently large statistical ensemble),
Rayleigh fading can be as feasible as Rician fading, particularly in SIR
and SINR modeling in a simple coverage region for SIR and SINR values
greater than 0 dB (see Sections 3.6.1 and 3.6.2). Should we require more
generality and accuracy (e.g., regarding the average SIR and SINR values
in the region (−∞, 0) dB), the Nakagami fading is closely related to the
Rician distribution, while retaining analytical tractability due to the gamma
distribution belonging to the exponential distribution family. The Nakagami
fading can also be used to model shadowing through approximating the
shadowed Rician distribution [78]. Surprisingly enough, the Rayleigh fading
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can also be used as an approximation of log-normal shadowing with a
minor modification; namely, for an even simpler shadowing model than the
Nakagami, a feasible compromise between tractability and realism is the
defective exponential power fading distribution

P(h > y) = νe−yc, ν ∈ (0, 1], c > 0, (2.13)

which can be used to model the log-normal mixture shadowing through
matching the first two moments of the fading distributions: This shadowing
distribution will be used in the interference cancellation in Section 3.6.4
(Publication IV includes more details and a comparison to Monte Carlo
simulated actual log-normal shadowing).
Multiple refinedmodels exist. Fadingmodels exist that include the Doppler

effects (see, e.g., [70]), which can be utilized in the stochastic geometry
analysis presented in the work. However, we leave them without further
attention, since the scope of the thesis is in system-level stochastic geometry
characterization of LEO communications rather than punctual link-level
signal modeling and processing. While, of course, realism is of value, the
ultimate aim is clarity and insight.

Figure 2.10. Comparison between the PDFs of the Rice-K and Nakagami-m dis-
tributions with equal mean and variance of the distributions of the
squared r.v.’s, corresponding to matched first two moments of the
power fading.

53



LEO System Modeling

2.7.2 Temporal fading characteristics

Figure 2.11. Geometry for Doppler effects in the satellite. (The figure is from a
Wikipedia article.)

Doppler shift at the LEO BS is caused by the movement of the Earth
transmitter, the movement of the satellite, and the movement of the Earth.
Accordingly, the crucial properties are the orbital velocity of the satellite
and its relative velocity w.r.t. the Earth transmitter: v⃗sat and v⃗sat, rel, re-
spectively. The Doppler shifts will not cause such distortion to the signals
(through dispersion and group delay effects) that would fall into the wide-
band category, i.e., we persist with the narrow-band assumption throughout
the thesis. The Doppler shift is directly linked to the temporal structure of
fast fading.
As depicted in Figure 2.11, one of the simplest models for a fading and

Doppler LEO channel is that the multi-path components arrive at the re-
ceiver from uniformly distributed directions. This may be the most plausible
scenario in a downlink transmission from the satellite to Earth; see Figure
2.11. However, a similar model applies to the uplink. The maximum Doppler
shift is determined by the absolute value of the velocity vector of the Earth
transmitter, i.e., the speed, fDmax = |v⃗mobile| /λc, where λc is the wavelength
of the transmission carrier and the Doppler shift due to v⃗sat, rel. For the
direct path, the Doppler shift caused by the Earth transmitter movement is
fDdir = |v⃗mobile| /λc cos(ϕ) cos(θ).
In the thesis, we omit the movement of the terrestrial transmitters and the

movement of the Earth. In the model, the farther multipath scatterers are
uniformly distributed around the transmitter, and the Doppler spectrum is
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symmetric to the carrier frequency. The theoretical power spectral density
(PSD) of a pure sinusoid response in the Doppler channel is described with
a first-order Butterworth-like Jake’s power spectrum [69]:

SDoppler(f) =

⎧
⎨
⎩

B√
1−(f/fDsat)2

for |f | ≤ fDsat,

0, otherwise,
(2.14)

where B is a normalization constant so that the filter energy is equal to one,
and fDsat is the Doppler shift, which will be characterized in this section.
The variation characteristics of a signal responding to the Doppler-shifted
channel are driven by the Doppler spectrum (2.14) and its counterpart
autocovariance function

Kyy ≜ E(y(t)y(t− τ)), (2.15)

which describes the correlation of the signal y with itself in lagged time
τ . The autocovariance function of a Rayleigh faded sinusoid y(·) involves
the zeroth-order Bessel function of the first kind Kyy(τ) = J0(2πτfDsat).
Consequently, the fading envelope amplitude correlation time, or coher-
ence time, of the multipath component of the fading gain (denoted here
by h(t)) has an approximate autocovariance Khh(τ) = J0(2πτfDsat)

2. How-
ever, this is an unnecessarily complex model, particularly considering its
Fourier transform, i.e., the PSD, which has no closed-form nor analytical
representation. Hence, adequate for the accuracy scope of this work, in
the temporal analysis, we use the triangular autocovariance function

Khh(τ) = triang(τfDsat), (2.16)

which governs the correlation of the multipath component of the fast fading
gain of a continuous signal in a block fading channel. The PSD describes the
spread of frequencies due to multipath scattering in the frequency power
domain f ∈ R, and it is given as the Fourier transform of (2.16):

Chh(f) =
1

fDsat
sinc2

(︃
f

fDsat

)︃
. (2.17)

2.7.3 Antenna attenuation due to satellite movement

Since we concentrate on narrow beams, the signal gain of a terrestrial
transmitter at the LEO BS is suppressed relatively quickly. The satellite
moves at its orbital speed, and the signal of a non-mobile terrestrial trans-
mitter will attenuate as the satellite moves over the transmitter. For the
−3 dB halfwidth φRX = 1.6◦, the attenuation time varies from 6 seconds
to 60 seconds for the altitudes h ∈ {200, 2000} km, respectively. For signal
processing, it is crucial to recognize whether the antenna attenuation time
dominates the fading coherence time or vice versa. To address this, we
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Figure 2.12. The Bessel model and the corresponding block fading triangular
autocovariance model. The coherence time is 1/fDsat ≈ 4 s.

define the antenna gain envelope amplitude correlation time for a Gaussian
antenna attenuation as a fraction 1/5 of the attenuation time of the −3 dB
lobe:

τa ≜ φRXh

5 sin2(ϵ)vsat
, (2.18)

where h, ϵ, φRX (rad), and vsat are the altitude, elevation angle, −3 dB
antenna gain halfwidth, and the orbital speed of the satellite, respectively.

Example 2.7.1. For ϵ = π/2, and φRX = 1.6◦ = 0.0279. The amplitude
correlation times for the altitudes h ∈ {200, 1000, 2000} km are

τa ∈ {0.2, 0.8, 1.6}s, (2.19)

respectively. See Figure 2.13 for a demonstration.

2.7.4 Doppler shift due to the satellite movement

We can consider the Doppler shift to be equal for all transmitters within the
narrow beam. The Doppler shift depends on the relative speed w.r.t. to the
Earth transmitters. The relative speed is zero at the zenith and increases
steeply for smaller elevation angles. A rough upper-bound approximation
of a LEO satellite relative speed is the approximate orbital speed

|v⃗sat, rel| ≈ 7.4 km/s. (2.20)

The direction of v⃗sat, rel is towards the transmitters; hence, the Doppler shift
is always positive. Based in these notions and experimental data (see Figs
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2.14a-2.14b), the Doppler shift (also of the baseband signal) due to the
satellite movement is

fDsat ≜ |v⃗sat, rel| /λc = |v⃗sat, rel| fc/c ≈ 5/2× 10−5fc, (2.21)

where λc [m] is the carrier wavelength and fc [Hz] is the carrier frequency,
and c ≈ 299, 792 km/s is the speed of light. [1] provides a more thoughtful
study of the LEO Doppler shifts.

Figure 2.13. Antenna attenuation gain of a transmitted signal as the LEO BS
satellite moves over the terrestrial transmitter. The satellite orbit
altitudes h ∈ {200, 1000, 2000} km are simulated in the spherical
model. The −3 dB halfwidth φRX ≈ 1.6◦.
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Figures 2.14a-2.14b show the simulated Doppler shift and its theoretical
counterpart in the baseband equivalent LEO (h = 200 km) channel with a
carrier frequency fc = 100 kHz, corresponding to a Doppler shift fDsat =
2.5 Hz. In Figure 2.14a, the shift becomes visible after the LEO BS has
progressed an adequate distance from the zenith. The simulated Doppler
shift is close to the approximation of the Doppler shift 2.14b when the LEO
BS is at a sufficient distance from the zenith.

2.7.5 Fading correlation time

The envelope amplitude correlation time (coherence time) of the faded
signal depends on the carrier frequency, altitude, and the spread of the
scatterers. A correlation distance of tens of meters is proposed for the LEO
link (n.b.: not time) in [1]. The amplitude correlation time is not the direct
scope of this thesis. However, based on the simulation (the code at the
end of the section), an estimate for the amplitude correlation time, as the
satellite moves at its orbital speed and the transmitter is non-mobile, is

τc ≜ 1/fDsat ≈
4π × 105

5fc
, (2.22)

which gives a rough temporal scale of the fading coherence assuming that
the scatterers are spread in a −3 dB footprint-sized area.

Example 2.7.2. For fc = 1 GHz, τc ≈ 0.04s. Hence, the fading amplitude
correlation time is clearly shorter than the antenna envelope attenuation
correlation time, τa = 0.2s, in the L, S, C, X, Ku, K, Ka bands and beyond,
for the narrow-beam LEO BSs at altitudes h ∈ [200, 2000] km.

In Chapter 3, we are for the most part interested in the average signal
power over a coherent or non-coherent use period in a non-temporal sense.
Whether we consider the Earth transmitters to be moving or not, the di-
rect characterization of the Doppler shifts—and the Doppler spread—is
abstracted in the random propagation model. The movement of the satellite
shifts the signals in the frequency spectrum by the magnitude (2.21). How-
ever, for narrow-band and narrow-beam LEO BS settings, it is reasonable
to assume that dispersion due to the delay spread is negligible, and we can
consider that the Doppler shifts do not alter for the transmitters in a small
footprint of a narrow antenna beam. Hence, the relative signal powers
in the frequency band during the use period are invariant. The multipath
fading effects, which are related to the Doppler shift in the temporal sense,
a large variety of statistical models are feasible for the analysis, including
many statistical propagation models of the received signal envelope or
power magnitude with the Doppler effect incorporated. The simplest model
is the Rayleigh model for the multipath propagation component, which, in
the temporal sense, connects to the Doppler shift through Jake’s model and
the corresponding PSD and the autocorrelation function.
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The temporal channel responses are studied in Chapter 4. Novel au-
tocorrelation and PSD models are proposed specifically for narrow-band
and narrow-beam LEO systems. Temporal stochastic geometry modeling
and analysis of LEO communications based on stochastic geometry will
be proposed. The models are a balance between tractability, insight, and
realism.

2.7.6 Simulated example of a Narrow-beam LEO Rician channel response
of a sinusoidal signal

See Figure 2.15 for a simulation of the channel response of a signal at the
narrow beam LEO BS receiver at the altitude h = 200 km and elevation
angle ϵ = 90deg w.r.t. the sub-satellite point (the antenna is constantly
directed towards the Earth center), as the satellite moves over the trans-
mitter. The Rician multipath channel is modeled with Poisson locations
of scatterers on the (spherical) Earth surface. The Earth rotation is not
modeled, and the satellite is in a non-inclined orbit. A signal of a single
tone Sb(t) = A exp{−2πfmti}, where A > 0, fm = 10 Hz and i2 = −1, is
quadrature amplitude modulated (QAM) onto a carrier wave of frequency
fc ∈ {1 kHz, 1 GHz}, probed through the channel, then downconverted back
to the baseband equivalent complex signal and further its real part using
ideal filtering at the LEO BS (see [80][Sec. 2.2.2 Baseband Equivalent
Model] for further details). The signal is affected by the fading, Doppler
shift, and phase shift, of which the latter is not of direct interest but can be
calculated easily from the delay by using (2.2) or (2.4). The Octave code
for the simulation is given at the end of the section.
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(a) The channel response is with a small carrier frequency in a pure LoS channel.
Only antenna attenuation and Doppler shift (which is not visually apparent)
are present.

(b) The channel response is with a small carrier frequency in a Rician fading
channel. The fading coherence time is longer than the antenna attenuation
envelope amplitude correlation time; τc > τa. In the example, the signal is
amplified due to fading.
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(c) The channel response is with a high carrier frequency in a LoS channel. Only
antenna attenuation and Doppler shift are present: In the LoS channel, for the
high carrier frequency, the response is almost identical to Figure 2.15a.

(d) The channel response is with a high carrier frequency in a Rician fading channel.
The fading coherence time is a similar time-scale to the antenna attenuation
correlation time; τc ≈ τa. In the example, the response has a deep fade at
t ≈ 3.5s.

Figure 2.15. The channel response of a tone affected by Doppler shift, multipath
scattering, and narrow-beam antenna attenuation.62
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function [Gss taus LoSloc, signals] = satellite_baseband_simulation()

## The algorithm simulates the baseband equivalent signal in the LEO

## channel when the satellite passes over a transmitter. The LEO BS is

## at zenith w.r.t. its sub-satellite point. The multipath propagation is

## modeled with Poisson distributed scatterers around the transmitter.

## At each scatterer, the signal is reflected at a random phase towards

## the satellite, and the propagation delay is calculated according to

## the scatterer location. (The propagation between the transmitter

## and each scatterer is not modeled.)

##

## Outputs a plot of the signal and the following observables:

## Gss: the maximal gain of the propagated signal components at each simu-

## lated time instance given in Gs(1, :), the minimum gains in Gs(2, :)

## taus: the maximal propagation delays at each simulated time instance

## in tau(1, :), and the minimum delays in tau(2, :)

## LoSloc: the location of the Earth transmitter (LoS ray) at each

## simulated time instance in polar coordinates

## signals: a vector of the received faded signal in discrete times

R = 6378 * 1000; # Radius of Earth in m

h = 200 * 1000; # Altitude of the satellite

K = 1; # Rician parameter

scatterers = 1000; # Number of scatterer-obstacles

refs = refpoints(scatterers); # Initialize scatterer locations into ’refs’

A = h; # Amplitude of the transmitted signal

fm = 10; # Modulation frequency

fc = 1 * 10 ^ 5; # Carrier frequency

## bbsignals(.) is utilized by the nested function RXbaseband(.)

bbsignals = @(t) [A * sqrt(K / (K + 1)) .* exp(-i * 2 * pi .* fm * t)];

## Random phases for initial baseband transmissions

randphases=rand(1, length(refs(1, :)) - 1);

## Combine the LoS and scattered components

bbsignals = @(t) [bbsignals(t(1)) A / (sqrt(scatterers).*sqrt(1 + K))...

.* exp(-i * 2 * pi .* t(2: length(t))...

.* fm + randphases .* 2 * pi * i)];

## Distance to the satellites in m, utilized in RXbaseband(.)

d = @(gamma) sqrt((cos(gamma) .* (R + h) - R) .^ 2 + ...

(sin(gamma) .* (R + h)) .^ 2);

## The angle in the antenna pattern, utilized in RXbaseband(.)

varphi = @(gamma) acos((d(gamma) .^2 + (R + h) .^ 2 - R ^ 2)...

./ (2 .* d(gamma) .* (R + h)));
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## Gaussian antenna gain, utilized in RXbaseband(.)

G = @(gamma) 2 .^ (-varphi(gamma) .^ 2 / deg2rad(1.6) .^ 2);

N = 6000; # Number of time samples

t = 0; # Initial time

refs = rotateearth(-3, refs); # Initialize the Earth position

[signal Gs] = RXbaseband(t); # Initialize the first baseband signals

thop = 1 / 1000; # The time hop per each rotation

taus = zeros(2, N); # Reserve the memory for the output vectors

Gss = zeros(2, N);

LoSloc = zeros(2, N);

for iii = 1 : N

## Observe the progress

if(mod(iii, 25000) == 0)

iii

end

Gss(1, iii) = max(Gs); # Save the maximal gain

Gss(2, iii) = min(Gs); # Save the minimum gain

taus(1, iii) = max(tau); # Save the maximal propagation delay

## taus(2, iii) = min(tau); # Save the minimum propagation delay

taus(2, iii) = tau(1); # Save the propagation delay of the LoS ray

LoSloc(:, iii) = refs(:, 1); # Save the transmitter location

refs = rotateearth(thop, refs); # Rotate Earth.

[signal Gs] = RXbaseband(t); # New received baseband signal

signals(iii) = signal;

t = t + thop; # Next time instance

end

## Plot the resulting signal

figure;

hold on;

plot(linspace(0, t, N), real(signals), ’linewidth’, 1);

axis([[0, t], [-1, 1]]);

xlabel(’time (s)’, ’fontname’, ’DejaVu Serif’, ’fontsize’, 12);

legend(’Sinusoidal baseband signal’, ’fontname’, ’DejaVu Serif’,...

’interpreter’, ’tex’, ’fontsize’, 12);

grid on;

ylabel(’Amplitude (non-dimensional)’, ’fontname’,...

’DejaVu Serif’, ’interpreter’, ’tex’, ’fontsize’, 12);

set(gca,’fontsize’,12);

title(’LoS channel, f_m = 10 Hz, f_c = 0.1 GHz’,...
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’fontname’, ’DejaVu Serif’, ’interpreter’, ’tex’, ’fontsize’, 12);

hold off;

## In the following, define two nested functions for the derivation of the

## baseband signal at each time instance, and other for the Earth rotation

## The received baseband signal at time t

function [signal Gs] = RXbaseband(t)

c = 299792458; # Speed of light

if(!isempty(refs))

a = 1 ./ d(refs(1, :)); # Spatial amplitude path losses

Gs= G(refs(1, :)); # Gaussian antenna pattern

## Gs=ones(1, length(refs(1, :))); # Omnidirectional antenna pattern

tau = d(refs(1, :)) / c; # Propagation delays

else

a = [0];

tau = [0];

end

## Received individual signals

ab = Gs .* a .* exp(-i * 2 * pi .* tau .* fc);

signal = sum(ab .* bbsignals(t - tau)); #Aggregate received signal

endfunction

## Rotates the Earth (moves the satellite) and the scatterer locations in

## ’refs’ over the period thop, which can be negative

function newrefs = rotateearth(thop, refs)

GM = 3.986 * 10 ^ 14; # Gravitational constant

orbitalspeed = sqrt(GM / (h + R)); # Satellite speed in m/s

angularspeed = orbitalspeed / (h + R); # Angular speed of the satellite

rotation = angularspeed * thop; # Rotation of Earth

## Transform the polar coordinates to euclidean coordinates

eucpos = pol2euc(refs);

## Rotation about x-axis

newpos = [[1 0 0]; [0 cos(rotation) -sin(rotation)];...

[0 sin(rotation) cos(rotation)]] * eucpos;

newrefs = euc2pol(newpos); # Back to the polarcoordinates

endfunction

endfunction

## Returns a table of numbPoints Poisson points around the north pole

function refs = refpoints(numbPoints)
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refs = [0; 0]; # LOS component location.

## Generate the Poisson distributed random obstacle locations

## Change yMin to control the area width of the scatterers

## yMin = 1 - 0.00035; yMax = 1; # -3 dB footprint for h = 2000 km

yMin = 1 - 0.00000035; yMax = 1; # -3 dB footprint for h = 200 km

xMin = -pi; xMax = pi;

xDelta = xMax - xMin; yDelta = yMax - yMin; # Rectangle dimensions

## Pick points from uniform distribution

x = xDelta * (rand(numbPoints, 1)) + xMin;

y = yDelta * (rand(numbPoints, 1)) + yMin;

## Map the reference points to spherical coordinates

refs = [refs [pi / 2 - asin(y)’; x’]];

end

function p = euc2pol(e) # Euclidean 3D coordinates to polar

R = 6378 * 1000; # Radius of Earth

p = [acos(e(3, :) ./ R); (e(2, :) >= 0) .* atan2(e(2, :), e(1, :)) ...

+ (e(2, :) < 0) .* (atan2(e(2, :), e(1, :)) ...

+ 2 * pi)];

end

function e = pol2euc(p) # Polar coordinates to 3D Euclidean

R= 6378 * 1000; # Radius of Earth.

e = [R * cos(p(2, :)) .* sin(p(1, :));...

R * sin(p(2, :)) .* sin(p(1, :));...

R * cos(p(1, :))];

end
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3. Non-temporal analysis of the
narrow-beam LEO

3.1 Mathematical formulation of stochastic processes

We can study the statistical properties of a sampled dataX = {x1, x2, . . . , xN} ∈
Rn consisting of real numbers:

1. average; E(X) =
∑︁N

i=1 xi/N ,

2. variance; var(X) = E(X2)− E(X)2 =
∑︁N

i=1 x
2
i /N − E(X)2,

3. skewness,

4. kurtosis (heavy-tailedness),

5. etc.

Each property is determined by the order n ∈ {1, 2, 3, 4, . . . } moments
E(Xn), respectively. Generally, the E(Xn), n > 2, is called the higher-order
statistics (HOS). Under the law of large numbers, as the sample size grows
arbitrarily large, N → ∞, the sample HOSs are equal to the HOSs of the
underlying r.v. 1 The average value and HOS are a sufficient characterization
of a r.v. on a bounded domain. However, in the following, we will formulate
the measure-theoretic definition of the r.v.
Slightly abusing the notation, we proceed with the definition of a r.v. X

having the outcomes in R by equating it with an indefinitely large sample
data

X = lim
N→∞

{x1, x2, . . . , xN}.

Let us assume that the limiting properties of the data assign a probability
0 < P(Ai) ≤ 1 to interval (t1, t2) as the fraction of sample appearances
within the interval vis-à-vis the total number of samples. Furthermore, the
applies for a chosen family of open or closed sets {Ai}i∈J ⊂ 2R (the index set

1Taking here a more or less frequentist stance that such an r.v. with objective
stochastic properties exists.
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I can be countable or not). For the sake of the mathematical description, we
insist that all such sets under the interest belong to a family F ⊂ 2R, which
must include, at minimum, the set R and the empty set ∅, plus the countable
unions, countable intersections, and mutual complementations of all its
members. The sample space R has the probability P(R) = 1 (by definition,
any sample is certainly inR) and the probability that nothing happens P(∅) =
0. The sum of the probability measures of the disjoint subsets is countably
additive, adding at most to 1 and summing precisely to 1 if they cover all
R. By this definition, the family F forms a σ-algebra, corresponding to the
event space that, combined with the probability measure P(·) : F → (0, 1),
constitutes the probability space,

P = (R,F ,P(·)). (3.1)

An event A ∈ F with probability P(A) > 0 and the events without a zero-
probability neighborhood, i.e., P{S ∩ A} > 0, for all open F ∋ S ⊇ A, is
called an observable event or observable realization—or only an event or
realization. We will use the notations P{X > x} = P{(x,∞)} and P{X =

x} = P{{x}}, etc., interchangeably.

Definition 3.1.1. The probability distribution is a function representing
the probability measure P(·). For a one-dimensional r.v. X,

F (t) = P{X > t} = E{1(X > t)}. (3.2)

The distribution function reflects the probability of an event that the r.v.
exceeds t ∈ (−∞,∞). The latter, useful, equivalence includes the indicator
function 1(·) of a given event, mapping X into a biased coin toss for a given
t. Having the pointwise probabilities well-defined, (3.2) can be identified
with the probability distribution, admitting a representation by a right-
continuous complementary cumulative distribution function (CCDF); F (·).
The possible discontinuities in the CCDF correspond to atomic probability
measures of singleton sets at the jump locations: The distribution function
can describe the statistics of discrete, continuous, or mixed r.v.’s.

Remark. If the CCDF is strictly decreasing and continuous at some t, arbi-
trary small neighborhoods (t− ε, t+ ε), ε > 0 have a non-zero probability:
P{(t − ε, t + ε)} = F (t − ε) − F (t + ε) > 0. Considering the limit ε → 0,
one can consider X = t a possible event and an observable realization,
even though P{X = t} = 0. This is a mathematical artifact stemming
from the measure-theoretic formulation of probability theory. However,
there can be null events so remote from the domain of non-zero measure
that, with all the best stretching of the imagination, can not be considered
“observables”. (Consider, for example, a CCDF of a coin flip and the null
sets it induces—the CCDF defined on R as a two-step function). This is
exactly the reason we describe the realizations to exclude the measure-zero
events that are sufficiently “far”, i.e., which have measure-zero events in
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their neighborhood, from non-zero events. The term “almost never”, or its
complement, “almost surely” (a.s.), is commonly used and refers to such
possible zero-probability events. Alternatively, we could redefine the sample
and event space and minimize the irrelevant null events, but this is not
always feasible. While the mathematical analysis is practical by considering
the continuum for the sample space, in reality, sample spaces are finite at
the core. For example, when implementing a stochastic process on a digital
computer, all observable events have a positive probability because of the
limited resolution and memory space.

In theMonte Carlo simulations technique, the probability distribution of a
random variable is determined by the average E(1(X > t)) = P(X > t) from
a large set of observation data simulated by a computer; this also entails
the study of moments E(Xn), etc. The indicator function 1(·) denotes that
a given event is observed.
A set of one-dimensional r.v.’s combined is a multidimensional r.v., or

random vector,Xs = (X1, . . . , Xm),m ∈ N. Further, a set of sets (a family) of
r.v’s Ξ = {Xs}s∈I is a generic random process. If eachXs is associated with
a probability space determined from the probability spaces of Xi, then the
probability space PΞ = P(ΩΞ,FΞ,PΞ(·)) of Ξ is a combination. Determining
this probability space does not have a general, straightforward single-hand
methodology. Let us verbalize our working definition of a stochastic process:

The stochastic process encompasses the observable events of a
random phenomenon, each event associated with a probability
measure represented by one or multiple probability distribution
functions.

We consider the stochastic process as the mathematical description of a
random process with a well-defined statistical structure (probability space);
however, this philosophical distinction between “random” and “stochastic”
is not definite and is used interchangeably in this work.

Example 3.1.1 (Binomial point process.). The stochastic process of a single
uniformly distributed point in a finite box (0, L) × (0, L) ⊂ R2 is easy to
construct as a combination of two uniformly distributed one-dimensional
r.v’s. Consider X = (X,Y ), where X and Y are independent uniform r.v’s
on (0, L). From the independence, X admits the joint distribution function
F (x, y) = FX(x)FY (y), where

FX(x) = P{X > x} =

{︄
1(x ≤ 0) x ≤ 0 or L ≤ x,

1− t/L 0 < t < L.
(3.3)

and equivalent for Y . Furthermore, the process of N such independent
points is called the binomial p.p. {Xi}i∈[N ]. Its distribution is

∏︁
i∈[N ] F (xi, yi)

for all (xi, yi) ∈ (0, L)× (0, L). Following the definition, for each subset A ⊂
R2, the number of points within the subset follows the binomial distribution
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depending on the size of the set A, L, and N . Hence, the binomial process
can be interpreted as a random counting measure on the subsets of (0, L)×
(0, L) ⊂ R2 (straightforwardly generalizing to Rn).

3.2 Homogeneous Poisson point process

We are finally ready to formalize the Poisson point process (PPP). The
homogeneous Poisson point process (PPP) can be seen, in a sense, as a limit
of the binomial process as L → ∞, N → ∞. However, because defining the
distribution of a “uniform” r.v. on the entire R is troublesome, constructing
the PPP is not this straightforward merely by combining random points as
in Example 3.1.1. We will characterize the Poisson point process (PPP) on
the plane directly as a combination of random measures on the subsets of
R2.
Consider a Poisson r.v. X = Φ(A), representing the number of points on a

set A ⊂ R2 of the area, i.e., Lebesgue measure, |A|, with the CCDF

P{Φ(A) > t} = 1− e−λ|A|
∞∑︂

j=⌈t⌉

(λ |A|)j
j!

, (3.4)

where ⌈t⌉ is the ceiling function, i.e., the smallest integer greater than or
equal to t. The λ is called the density parameter. The value λ |A| is called
the intensity measure. We have the following alternative representation of
the probability measure as the probability mass distribution function:

P{Φ(A) = k} =
(λ |A|)ke−λ|A|

k!
, (3.5)

for k ∈ N and 0 otherwise.
Next, we formulate the homogeneous PPP on any space S (say, the plane

or the surface of a sphere), or more precisely, on its measurable subsets
that form a σ-algebra that contains the compact sets of S (smallest such
being the Borel algebra).
Let Φs = (Φ(As1), . . . ,Φ(Asm)) be a random vector of the Poisson dis-

tributed r.v’s on disjoint compact measurable (Borel) sets Asi . The homoge-
neous PPP is the stochastic process {Φs}s∈J , with the index set J indexing
a family of compact sets. And indeed, such a p.p. can be defined: the
sum of Poisson distributed independent r.v’s

∑︁m
i=1Φ(Asi) follows a Poisson

distribution with the intensity measure
∑︁m

i=1 λ |Asi |. Conversely, if the sum
of independent r.v’s is Poisson distributed, then are the r.v’s [26].
Since Φ(A) ∈ N, Φ is a Poisson counting measure. From now on, we

denote by Φ the homogeneous PPP regardless of whether we refer to it as
the measure on the σ-algebra or any other formal definition. In practice,
S = R2 is sufficient for the analysis of the work, which we will continue
asserting. Let us further clarify the notations regarding the PPP and the
events in the following.
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Definition 3.2.1 (Event). By Φ(A), we refer to the random counting mea-
sure (of the points) on A. By Φ, we refer to random point realizations,
which are families of point sets. On the other hand, with a slight abuse
of the notation, but without ambiguity, we may emphasize the space of
the point process point realizations by denoting Φ ⊂ R2. The individual
random points in the p.p. are denoted as x ∈ Φ. We denote P{Φ ∈ A} as
the probability of an abstract event A in the Borel algebra FΦ; for example,
A = {“There exists an unit circle containing 4 points.”} ∈ FΦ. Another
example of notation usage is

P{Φ(A ∩B) > t}

≡ P{Φ ∈ {“more than t points in the intersection of A and B”}}.

If the events A1 = A2 in distribution, we mean P(A1 > t) = P(A2 > t) for
all t ∈ R. A conditioned PPP Φ on the event A is denoted as (Φ|Φ ∈ A),
and in the single point case, Φx ≡ (Φ|x ∈ Φ) ≡ (Φ|{Φ({x}) = 1}), etc. The
probability as a function of the event space can also be denoted as P{Φ ∈ ·}
(c.f., the standard function notation f(·)). Among the mathematical jargon
and multiple notations, we use the most convenient depending on the scope.
By definition, all events are superpositioned by the counting measures on

the compact sets on R2.

We observe important properties.

Theorem 3.2.1 (Crucial properties of the homogeneous PPP).

The homogeneous PPP has the following properties.

(I) Simple; all points are distinct,

(II) The points are spatially completely independent,

(III) Translation invariant, stationary and ergodic,

(IV) Conditionally a binomial p.p.

Proof. The results are well-known, and we will briefly go through them in
this section (also seeking a somewhat contemporary approach).

3.2.1 Palm calculus

Intuitively, a p.p. is a random set of points, each exhibiting more or less
dependence on the other point locations. The PPP has no dependence
between the points: Φ exhibits complete spatial randomness. Namely,
conditioning on any point does not alter the statistics of the PPP: This is
Slivnyak’s Theorem. In this section, we formalize this important property for
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the homogeneous PPP. First, we define the single-point event as a countably
infinite intersection of compact discs.

Definition 3.2.2 (Point-event). Let D(x, ε), ε > 0, be a compact disc of
radius ε. We can formulate the singleton or point event, i.e., the random
measure Φ(·) on a point set, as a countable intersection of discs:

Φ

(︃
lim
δ→0

D(x, δ)

)︃
≜ Φ

(︄ ∞⋂︂

n=1

D(x, ε/n)

)︄
= Φ({x}). (3.6)

Because the homogeneous PPP is absolutely continuous w.r.t. the Lebesgue
measure (all probabilities P{Φ(D(x, ε)) = k} are (well-)defined by λ ×
|(D(x, ε)|. Inductively, a point set realizations ϕ of Φ follows by combin-
ing point-events of Φ, and has the corresponding probability structure
defined by the limiting process.

Although observable, the probability of the single-point event Φ({x}) > 0

occurring is zero; however, it is reasonable to assume that some such
events must always occur. Further, recall property (I): if there is a point
at {x}, there are no other points at an equivalent location. That is, the
homogeneous PPP is simple, which we formally prove in the following. The
logical conclusion is, concisely put, if {x} has some points of a realization
of Φ, there is only one point at {x}.

Corollary 3.2.2 (The homogeneous PPP is simple). If Φ({x}) > 0 then
Φ({x}) = 1.

Proof. By (3.4), the void probability,

P{Φ(D(x, δ)) = 0} = e−λπδ2 . (3.7)

By conditional probability, we have for k ∈ N+

P{Φ({x}) = k|Φ ∈ {“{x} is non-empty”}}

= lim
δ→0

P{Φ(D(x, δ)) = k|Φ(D(x, δ)) > 0} = lim
δ→0

P{Φ(D(x, δ)) = k}
P{Φ(D(x, δ)) > 0}

= lim
δ→0

(λπδ2)ke−λπδ2

k!(1− e−λπδ2)

(a)
= lim

δ→0

δ2k

(1− e−λπδ2)

(b)
= lim

δ→0

2kδ2k−1

2δe−λπδ2
= 1, (3.8)

only if k = 1 and 0 for k > 1. In (a), the product rule of the limit is used, and
(b) uses the product rule and L’Hôpital’s rule.

Define the conditioned and conditioned, then reduced, PPP as Φx ≡ Φ ∈
{Φ({x}) = 1} and Φ!

x ≡ Φ ∈ {{Φ({x}) = 1} \ {x}}, respectively. To clarify
the latter, in Φ!

x, we condition x ∈ Φ and then reduce it from the p.p.
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Lemma 3.2.3 (Palm distribution on compact sets). The counting measure
distribution Φ(·) holds for all A ⊂ R2, k ∈ N;

P{Φx(A \ {x}) = k} = P{Φ(A) = k}. (3.9)

Furthermore, for all compact A ⊂ R2, we have

P{Φ!
x(A) = k} = P{Φ(A) = k}. (3.10)

Proof. Proof of (3.9): By the conditional probability of independent events,

lim
δ→0

P{(Φ(A \D(x, δ)) = k)|(Φ(D(x, δ)) = 1)}

= lim
δ→0

P{Φ(A \D(x, δ)) = k}P{Φ(D(x, δ)) = 1}
P{Φ(D(x, δ)) = 1} = P{Φx(A \ {x}) = k}

= P{Φ(A) = k},

because P(Φ({x}) = 1) = 0.
Proof of (3.10): By the conditional probability of independent events,

lim
δ→0

P{Φ(A \D(x, δ) = k}P{Φ(D(x, δ)) = 1}
P{Φ(D(x, δ)) = 1}

= lim
δ→0

P{Φx(A \D(x, δ)} = k) = P{Φx(A \ {x}) = k}

= P{Φ!
x(A ∪ {x}) = k} = P{Φ(A ∪ {x}) = k} (a)

= P{Φ(A) = k}; (3.11)

(a) follows because Φ({x}) = 0 almost surely.

Property (II):

Theorem 3.2.4 (Slivnyak’s Theorem). The original PPP distribution is
equal to the reduced Palms distribution:

P{Φ ∈ ·} = P{Φ!
x ∈ ·}. (3.12)

Proof. Consider the family of Poisson random vectors of counting measures
{(Φ(A1), . . . ,Φ(An))} on disjoint compact the sets {Ai}, each variable de-
pending on λ|Ai|. For all such sets, Theorem 3.2.3 holds. The result follows
for general events A ∈ FΦ, considering the definition of an event 3.2.1.

An important insight from Slivnyak’s theorem is that, for example,
we can condition the studied typical transmitter at an arbitrary
location (usually at the origin), and the statistics of the other trans-
mitters in the PPP remain invariant. Furthermore, it makes no
difference whether we consider the typical transmitter to the PPP or
not for the metrics that consider only the other transmitters, such
as the interference at the typical transmitter. In the described sense,
the typical point (transmitter) of the PPP is equivalent to the typical
(any) location for the homogeneous PPP.
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3.2.2 Stationarity and ergodicity

Property (III):

Corollary 3.2.5 ( Stationarity). The homogeneous PPP is stationary, also
called translation invariant.

P{Φ ∈ ·} = P{Φ+ x ∈ ·} for all x ∈ R2, (3.13)

where Φ+ x is a translation of all point in Φ.

Proof. For homogeneous PPP for any A ⊂ R2. Φ(A) = Φ(A + x), where
A+x is the set translated by the vector x ∈ R2. This is a direct consequence
of the definition that the distribution of Φ(A) depends only on the size |A|.
The result generalizes to the event A ∈ FΦ by Definition 3.2.1.

Because of translation invariancy and Slivnyak’s theorem 3.2.4, we can
observe the point process from the typical location, for example, the origo
o ≜ (0, 0), without loss of generality. According to Slivnyak’s theorem, the
typical location is also the typical point of the PPP.

Definition 3.2.3 (Mixing). According to the stationary and independence
of the counting measures on distinct sets, the homogeneous PPP is a mixing.

P{(Φ + x ∈ A) ∩ (Φ ∈ B)} = P{Φ ∈ A}P{Φ ∈ B}, ∥x∥ → ∞

for all events A,B ∈ FΦ, as defined in Definition 3.2.1, that are defined on
a bounded set.

The Mixing condition implies ergodicity.

Corollary 3.2.6 (Ergodicity). The homogeneous PPP is ergodic.

lim
t→∞

1

(2t)2

∫︂

[−t,t]2
P{(Φ + x ∈ A) ∩ (Φ ∈ B)}dx = P{Φ ∈ A}P{Φ ∈ B}.

for such events A,B ∈ FΦ.

In words, ergodicity means that the spatial average equals the ensemble
average.

Example 3.2.1. Consider B = ϕ is a point set realization of Φ restricted to
the bounded set [−t, t]2 for each t, and assume the event Φ ∈ {ϕ}. Using
conditional probability and by ergodicity,

lim
t→∞

1

(2t)2

∫︂

[−t,t]2
1{(ϕ+ x) ∈ A}dx = P{Φ ∈ A}. (3.14)

Ergodicity is a crucial concept regarding the simulation and inter-
pretation of the analysis of the homogeneous PPP: The ensemble
average of the typical point equals the average over all points in a
given point realization, a.s.
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3.2.3 Campbell’s formula and probability generating functional

Corollary 3.2.7 (Intensity measure). The expected number of points, also
called the intensity measure of A, is given for the homogeneous PPP by

E{Φ(A)} =
∞∑︂

k=0

kP{Φ(A) = k} = e−λ|A|
∞∑︂

k=0

k
(λ |A|)k

k!
= λ |A| . (3.15)

Note that E{Φ(A)} = λ
∫︁
A dx, where λ is called the intensity parameter.

This representation outlines the following theorem.

Theorem 3.2.8 (Campbell’s formula). For a real-valued measurable f(·),

E

(︄ ∑︂

x∈Φ∩A
f(x)

)︄
= λ

∫︂

A
f(x)dx (3.16)

Proof. Because

E{ciΦ(Ai)} = E

(︄∑︂

x∈Φ
ci1(x ∈ Ai)

)︄
= λ

∫︂

R2

ci1(x ∈ Ai)dx,

the result holds for the simple function fm(x) =
∑︁m

i=1 ci1(x ∈ Ai) on the
support A = ∪m

i=1Ai. The final result follows as a monotone approximation
fm(·) m→∞→ f(·) by dividing A into ever narrower segments.

Property (IV): Let us observe the PPP (Φ|(Φ(A) = N)) in the window
A = ∪i=1Ai the sets {Ai}mi=1 of equal sizes. In the homogeneous PPP, each
of the N points {xi}Ni=1 are independently distributed in A and are at equal
probabilities in a set Ai; p = P(xn ∈ Ai) = |Ai| / |A|. The probability that
0 ≤ n ≤ N points are inAi is a Bernoulli trial of n successes with the success
probability of p. Hence, the conditioned, Φ(A) = N , homogeneous PPP in
a bounded window A is a Binomial process. Each point is independently
uniformly distributed in A.
We can use this fact in the derivation of the probability generating func-

tional.

Theorem 3.2.9 (Probability generating functional of the homogeneous
PPP). Let f(·) : R2 → [0, 1] s.t. f(x) → 1 as ∥x∥ → ∞. The probability
generating functional (PGFL) of the homogeneous PPP is given by

G(f) = E

(︄∏︂

x∈Φ
f(x)

)︄
= exp

{︃
−λ

∫︂

R2

(1− f(x)) dx

}︃
, (3.17)

exp

{︃
−2πλ

∫︂ ∞

0
r (1− f(r)) dr

}︃
(3.18)

whenever exists.
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Proof.

E

(︄ ∏︂

x∈Φ∩A
g(x)

)︄
=

∞∑︂

k=0

P(Φ(A) = k)

(︃∫︂

A
g(x)dx/|A|

)︃k

= e−λ|A|
∞∑︂

k=0

(λ |A|)k
k!

(︃∫︂

A
g(x)dx/ |A|

)︃k

= exp

{︃
−λ

(︃∫︂

A
(1− g(x))dx

)︃}︃
.

The result follows by the substitution g(x) = 1(x ∈ A)f(x), and by letting
A → R2.

3.3 Gaussian projection process

A projection process projects the homogeneous PPP from the plane into the
real line as a function of the norms. An exponential function, or a stretched
exponential function, r ↦→ exp{−arb}, can be used as the projection mapping.
Such processes have been studied before in the literature modeling the
spatial path loss in terrestrial networks [45]. Maybe not so surprisingly, the
Gaussian mapping, i.e., the exponent b = 2, yields a significantly simpler
analysis than the other exponents.
We present an extensive study and characterization of such a Gaussian

projection process (GP). We may also use the term “gain process” because
of its interpretation as the random process of gains (further, the SNRs
with constant noise powers) of the transmitters in a narrow-beam LEO
setting. The GP also describes the SIR values of the transmitters and can
be dexterously used to characterize the SIR and SINRs. Of course, the
properties (I)-(IV) can apply in the underlying, projected, homogeneous
PPP (e.g., of terrestrial NTN terminals).

Remark (Connection to the Gaussian processes). Although the abbreviation
“GP” is also used in the context of Gaussian processes, the Gaussian pro-
jection process, i.e., also the GP, is not to be, at least directly, considered
as a Gaussian process. However, I decided to use the terminology since
the p.p. under study directly links to the Gaussian function in the defini-
tion. Namely, the standard immediate connotations of the term “Gaussian
projection process” and its abbreviation “the GP”, even if strictly speaking
incorrect, acknowledge the Gaussian nature and the consequent tractable,
lubricant analytical framework and inquiry of the GP (referring from now
on to the Gaussian projection process). Furthermore, the GP produces a
Gaussian process in many natural settings, as will be explored in Chapter
4.
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Definition 3.3.1 (Gaussian projection process (GP)). Given the Gaussian
mapping G(r) = e−ar2 and a homogeneous PPP Φ on R2, we can assert
r = ∥x∥, x ∈ Φ as the argument for G(·). Let {hx}x∈Φ be i.i.d. r.v’s. The
Gaussian projection process is defined as

G ≜ {hxG(∥x∥) : x ∈ Φ} . (3.19)

If we consider that hx ≡ 1, or being i.i.d. r.v’s, we can refer to the typical
h = 1, and denote

G1 ≜ (G|h = 1). (3.20)

We start by analyzing G1. Note that the GP is not homogeneous: for
each point, x ∈ G1 ∩ (t1, t2), the corresponding point in Φ is distributed
inside the preimage-torus D(o, G−1(t1)) \D(o, G−1(t2)) ⊂ R2, with G−1(·)
as the inverse function of G(·) with the support on (0, 1); G−1(t)|t∈(0,1). The
intensity measure is

E[G1(t, 1)] ≜ ΛG1((t, 1)) = EΦ[Φ(D(o, G−1(t)))] = πλ
(︁
G−1(t)2

)︁
. (3.21)

The derivative

λG1(t) ≜ −ΛG1((t, 1))

dt

(a)
= −dπλ

(︁
G−1(t)2

)︁

dt
= −2πλ

(︃
G−1(t)

dG−1(t)

dt

)︃
,

(3.22)
is called the density parameter of G1. By marking G−1(t)dG−1(t) = rdr, we
have,

−λG1(t)dt = 2πλrdr. (3.23)

−λG1(·) is the Radon-Nikodym derivative of the measure

ΛG1((t1, t2)) = 2πλ

∫︂ G−1(t1)

G−1(t2)
rdr = 2πλ|D(o, G−1(t1)) \D(o, G−1(t2))|

w.r.t. the Lebesgue measure on (0, 1). Using this fact and Theorem 3.2.9, we
have the PGFL of G1 and have a complete characterization of the projection
process with deterministic h = 1 as an inhomogeneous PPP.
Yet, we have not used the Gaussian assumption. However, it comes into

use in the following corollary.

Corollary 3.3.1 (Density of the GP). The density of G1 is

λG1(t) = κ̃/t|t∈(0,1), κ̃ ≜ πλ/a. (3.24)

Furthermore, with general h, the GP is an inhomogeneous PPP of the density

λG(t) =
κ̃Fh(t)

t

⃓⃓
⃓
t∈R+

− κ̃(1− Fh(t))

t

⃓⃓
⃓
t∈R−

, (3.25)

where Fh(t) is the (possibly degenerate) CCDF of the r.v. h. .
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Proof. Having G−1(t) =
√︁
− log(t)/a, one can derive from (3.22) (a) the

density of G1. The latter result is proved in Corollary 3.3.3.

Corollary 3.3.2 (A natural interpretation of the GP). For a = log(2)D2
h,ϵ/φ

2
RX =

log(2)(sin2(ϵ)/(hφRX))
2, the parameter κ ≜ log(2)κ̃ has an intuitive interpre-

tation as the average number of UEs inside a LEO BS −3 dB footprint for
general altitudes and elevation angles in case of the narrow-beam LEO (see
Publication III).

Example 3.3.1 (Intercell interference). Set

FH(x) =

{︄
1, if x < 1/2

0 if x ≥ 1/2
. (3.26)

Then,
λG(t) = κ̃/t|t∈(0,1/2). (3.27)

Should we consider the served cell (intracell) as the −3 dB footprint, the
resulting density has an interpretation as the density of the p.p outside
the intracell: This will be a strikingly straightforward way to characterize
intercell interference.

Corollary 3.3.3 (PGFL of the GP). Let f(·) : R+ → [0, 1], necessarily, s.t.
f(x) → 1 as x → ∞. The PGFL of G is

GG(f) = E

(︄∏︂

x∈G
f(x)

)︄
= exp

{︃
−
∫︂ ∞

−∞
(1− f(t))λG(t)dt

}︃
, (3.28)

where λG(t) is given in (3.25).

Proof. The Markov kernel of the G1 with each point multiplied by the i.i.d.
h is p(x, y) = fh(y/x)/x, where fh(·) is the PDF of h. We have

E

⎛
⎝∏︂

y∈G
g(y)

⎞
⎠ = EG1

⎛
⎝
∫︂ ∞

−∞
g(y)

∏︂

x∈G1

p(x, y)dy

⎞
⎠

= E
∏︂

x∈G1

(︃∫︂ ∞

−∞
g(y)p(x, y)dy

)︃

(a)
= exp

{︃
−κ̃

∫︂ 1

0

(︃
1−

∫︂ ∞

−∞
g(y)p(t, y)dy

)︃
/tdt

}︃

= exp

{︃
−κ̃

∫︂ ∞

−∞
(1− g(y))

∫︂ 1

0
p(t, y)/tdtdy

}︃

= exp

{︃
−κ̃

∫︂ ∞

−∞
(1− g(y))

∫︂ 1

0
fh(y/t)/t

2dtdy

}︃

78



Non-temporal analysis of the narrow-beam LEO

= exp

{︃
−
∫︂ ∞

−∞
(1− g(y))λG(y)dy

}︃
.

In (a), we used the PGFL of G1, which can be derived from Theorem 3.2.9
(this is only the well-known form of the PGFL of the PPP). The proof is
concluded.

We present some important results regarding the GP (many are well-
known and apply to general PPPs).

Corollary 3.3.4. The Laplace transform LI(s) ≜ E (exp{−sI}) of the sum
J =

∑︁
x∈G gxf(x), where {gx}x∈Φ are i.i.d. r.v’s is given by

LJ(s) = exp

{︃
−
∫︂ ∞

−∞
(1− Lg (sf(x)))λG(x)dx

}︃
, (3.29)

where Lg(s) is the Laplace transform of the typical gx, and the density λG(x)
is (3.25).

Proof.

E
(︂
e−s

∑︁
x∈G hxf(x)

)︂
= EG,h

(︄∏︂

x∈G
e−shxf(x)

)︄
(a)
= EG

(︄∏︂

x∈G
Ehx

(︂
e−shxf(x)

)︂)︄

(b)
= E

(︄∏︂

x∈Φ
Lh(sf(x))

)︄
= G (Lh(sf(·))) = G(Lh ◦ sf).

(a) follows because all {gx} are i.i.d.—Furthermore, in (b), we can denote
the typical gx by g, and product elements are, by definition, the Laplace
transform of g.

Note that we can incorporate two different r.v’s into the underlying ho-
mogeneous PPP, first into the density parameter of the projection process
density parameter (3.25) and secondly, into the multiplication of each term
in the sum I, and we have a tractable characterization of I as the Laplace
transform (3.29). For example, the r.v’s h and g can represent shadowing
and fast fading, respectively.

Theorem 3.3.5 (Campbell’s formula). If exists for function f(·), we have
the following two representations for the expected sum

E

(︄∑︂

x∈G
f(x)

)︄
=

∫︂ ∞

−∞
f(x)λG(x)dx =

∫︂ 1

0
Eh(f(xh))λG1(x)dx. (3.30)

Proof. The result can be proved by monotonic convergence arguments
similarly to the proof in 3.2.9.
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Figure 3.1. A location-wise realization of the total interference at the LEO BS in
the spherical model (however, an omnidirectional LEO BS antenna).

The total interference is the sum of the GP. We call it “total” because none
of the signals are canceled (for example, the served transmitter signal). For
the rest of the thesis, I refers to the following.

Definition 3.3.2 (Total interference).

I =
∑︂

x∈G
Hxx =

∑︂

x∈G1

HxGxx, (3.31)

where H and G can be fading or shadowing variables, signals with a mean
0 (the latter is also denoted as Y or Z to distinguish it from the fading gain),
or a combination of all. Note that we can also incorporate GH in the density
of G, set either one or both to G,H ≡ 1, or use some of the combinations—
whichever is most convenient for the analysis. The GP point x can represent
power gain or amplitude gain as long as appropriate scaling is considered
for κ̃: If κ = log(2)κ̃ represents the average number of terminals in a −3

dB power footprint area (as it is in the thesis), κ̃ can be scaled by two for
correct amplitude modeling. We will introduce temporal structure to the
total interference I = I(t) in Section 4.

The following theorem is an absolute bedrock of this thesis. It char-
acterizes the mean and variance of the total interference in a strikingly
straightforward and general manner.
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Theorem 3.3.6 (Mean and the variance of the total interference). Assume
that |E(H)| < ∞ and E(H2) < ∞. The average total interference is

E(I) = E

⎛
⎝∑︂

x∈G1

Hxx

⎞
⎠ (a)

= κ̃E(H)

∫︂ 1

0
dx = κ̃E(H). (3.32)

The variance is

var(I) = var

⎛
⎝∑︂

x∈G1

Hxx

⎞
⎠ (b)

=

∫︂ ∞

−∞
x2λG(x)dx

= κ̃

(︃∫︂ ∞

0
xFH(x)dx−

∫︂ 0

−∞
x(1− FH(x))dx

)︃
= κ̃E(H2)/2. (3.33)

Proof. (a) follows directly from Campbell’s formula with f(x) = x and the
density of λG1 given in (3.24). The variance representation (b) can be derived
by taking the second derivative of (3.29) and taking the limit s → 0.

Remark (Amplitude gain versus power gain and the GP). When modeling
the amplitude, a straightforward method is to scale the formulas (3.32) and
(3.33) by a factor of two: This retains the interpretation of κ̃ log(2) as the
average number of transmitters within the −3 dB power footprint of the
LEO BSs.

There are at least two important applications regarding (3.33) and (3.32).
The first corresponds to signal power modeling and matching different
distributions by the first two moments, and the second refers to interference
waveform amplitude modeling and estimating correlation functions.

1. For a non-negative fading r.v. h; E[h] > 0,E(h2) < ∞, a second-moment
approximation between two different fading r.v’s while preserving the
mean and variance of the total interference can be performed using
the identities. For example, the forthcoming Theorem 3.3.7 can be
applied to general fading by moment matching.

2. For a white noise-type (WN) signal, h; E(h) = 0,E(h2) < ∞, the
variance equals the average signal power, which we refer to as the
total interference power (averaged over a short time period). Without
loss of generality, we usually set E[h2] = 1. Due to its distinct role, we
will refer to this kind of typical signal as the WN signal and the sum of
such signals at the Gaussian antenna gain as AWN total interference,
which refers to additive white noise (AWN), and “total” in that none of
the signals are canceled. In Section 4, Theorem 3.3.6 plays a crucial
role in the interference autocorrelation inference.

Example 3.3.2. (3.33) identifies the PSD of the AWN-total-interference with
the total power over the bandwidth (−κ̃/2, κ̃/2) of a two-sided (indeed two-
sided; see the remark in Theorem 3.3.6) WN signal with per-frequency
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normalized PSD. However, the “bandwidth” has no meaning in this context:
the aggregate signal—each separate signal filtered through the Gaussian an-
tenna gains—is a WN signal with amplified or suppressed power compared
to the typical signal h.

Theorem 3.3.7 (Total interference power distribution is gamma). Let G be
a normalized exponential r.v. (Rayleigh power fading) and H ≡ 1 in (3.31).
The Laplace transform of the total interference is

LI(s) = (1 + s)−κ̃, (3.34)

which is the Laplace transform of the gamma distribution of the shape
parameter κ̃. Furthermore, the gamma distribution is a good approximation
for general fading.

Proof. Substituting the exponential fading variable in (3.3.4) yields the
result. Furthermore, by matching the second moment, the gamma distribu-
tion closely approximates the power distribution for general fast-fading, as
demonstrated in Figures 3.2 and 3.3 for the Rayleigh channel and the LoS
channel.
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(a) The interference signals are affected by Rayleigh fading.

(b) The interference signals are affected by no fading.

Figure 3.2. The total interference power distribution over each terrestrial ter-
minal realization and power fading, with the transmission responses
affected by the Rayleigh fading and the LoS channel. The GP density
parameter κ̃ = 1. 83
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(a) The interference signals are affected by Rayleigh fading.

(b) The interference signals are affected by no fading.

Figure 3.3. The total interference power distribution over each terrestrial ter-
minal realization and power fading, with the transmission responses
affected by Rayleigh fading and the LoS channel. The GP density
parameter κ̃ = 5.84
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3.4 Total interference and the central limit theorem

Define the AWN total interference as the total interference (3.31) with
G ≡ 1, and H = Y is a WN signal (i.e., E(Y ) = 0 and E(Y 2) < ∞).
Because of the planar modeling, the GP encompasses, in principle, an

infinite number of interfering transmissions, and conditions for the central
limit theorem (CLT) are potentially satisfied for the total interference. In-
deed, it turns out that the CLT applies if the transmitted signals are WN
signals. In this case, the received aggregate interference waveform has a
Gaussian distribution over the entire statistical ensemble. For some readers,
the result might not seem surprising; however, it is not trivial. If one is
interested in the framework of Gaussian and non-Gaussian interference
modeling in wireless networks and stochastic geometry, please refer to the
literature review in Section 1.3.2, which addresses a handful of nominal
studies on terrestrial networks. Namely, multiple papers indicate that Gaus-
sian models are inadequate due to the rapidly decaying tail distributions,
and even the average interference signal waveform or power is generally
ill-defined within the topology of terrestrial networks. Hence, more slowly
decaying non-Gaussian statistical models are proposed. On the contrary,
we will demonstrate in the following sections that the AWN total interfer-
ence is a Gaussian process in the case of the narrow-beam LEO BSs. The
white noise signal waveform of each transmission is a sufficient condition
for the CLT. Further, we will continue with a counter-example of Rayleigh
faded power averaged over a use period (note; not the instantaneous signal
waveform power), which exhibits near-Gaussian behavior only when the
spatial density of the signal terminals is significantly large.
In practice, we will show that the Lindeberg’s condition is satisfied

for the AWN-total-interference. 2 The argument gets finalized in Theorem
3.4.4, whose proof encompasses Lemmas 3.4.1 and 3.4.3.

Lemma 3.4.1 (Marginal distributions of the order statistics). Let Xk+1 ∈
G1 ⊂ (0, 1) be the (k + 1)th largest point, k ≥ 0. The marginal (i.e., no
reference to other points) distribution function of Xk+1 is

fXn+1(x) =
d

dx
P(Xk+1 < x) =

κ̃xκ̃−1
(︁
− log(xκ̃)

)︁k

k!
. (3.35)

Proof. Analogous to the definition of the homogeneous PPP (3.5) but using
the density of the GP in (a),

P(Xk+1 < x) = P{G1 ∈ {(k + 1)th largest point in (0, x)}}

=
k∑︂

i=0

P{G1 ∈ {i points in (x, 1)}} (a)
=

k∑︂

i=0

(︁
− log(xκ̃)

)︁i
xκ̃

i!
.

2Jarl Waldemar Lindeberg was a Finnish mathematician known for work on the
central limit theorem (CLT).
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The result can be calculated, e.g., with symbolical aids first evaluating the
sum and then derivating.

Remark (Largest points and nearest neighbors). For the distances, the
PPPs Φ and G1 are equivalent by definition. Hence, although conceptually
referring to the former and latter p.p’s, respectively, the terms nearest
neighbor (or nearest point) and largest point are used interchangeably in
the context of G1. Namely, the nth largest point corresponds to the nth
nearest neighbor of the typical point o ∈ Φo (Properties (I)-(III), Thm. 3.2.1),
which can also be comprehended to refer to the neighbor of the supremum
of (0, 1) ⊃ G1, i.e., the point 1 ∈ (0, 1] (the boresight of the typical LEO
BS). By the mapping G1, we identify the limit points {1, 0} ⊂ R with the
respective {o,∞} ⊂ R2.
Furthermore, the terms strongest transmitter, largest gain, etc., can be

used in the context because of the interpretation of the GP as the p.p. of
the antenna gains of the spatially randomly located signal sources at the
typical LEO BS. However, these usually refer to the general G (the fading
variable incorporated in the density), not necessarily to G1, in which case
these concepts do not contain direct information about the spatial distances
in Φ.

The following corollary is a direct and simple implication of Lemma 3.4.1
but deserves a separate mention.

Corollary 3.4.2 (Void probability). The CCDF of the (1st) nearest neighbor
evaluated at x is the void probability of (x, 1). By substituting k = 0 into
(3.35) and integrating, the void probability has the CDF

P{G1((x, 1)) = 0} = P{G1 ∈ {All gains smaller than x}} = xκ̃. (3.36)

Note that in the following, the conceptualized point set consisting of the
n largest points does not have an ordering. However, complementing the
marginal order statistics (3.35), we will explore joint order statistics later
in Section 3.5.1.

Lemma 3.4.3 (Statistics of mutually non-ordered nearest points). Let

X{n} ∈ {Xi}ni=1 ⊂ G1 ⊂ (0, 1), X(n+1) < X{n},

be the typical point in a non-ordered set of n ≥ 1 i.i.d. points nearer (w.r.t.
the boresight 1 ∈ (0, 1]) than the (n + 1)th point. The following identities
hold for its distribution.

nE(X{n}) = κ̃

(︃
1−

(︃
κ̃

1 + κ̃

)︃n)︃
, (3.37)

nE(X2
{n}) =

κ̃

2

(︃
1−

(︃
κ̃

2 + κ̃

)︃n)︃
, (3.38)

nP(X{n} > x) ∼ ΛG1((x, 1)) = −κ̃ log(x), for x ∈ (0, 1], as n → ∞. (3.39)
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Proof. Referring to Lemma 3.4.1, denote the (n+ 1)th largest point with
Xn+1 ∈ G1. Picking an arbitrary point from the set of n largest points implies
by the standard properties of the PPP (Properties (I)-(IV), Thm. 3.2.1) that
all n points are i.i.d.; hence, X{n} ∈ G1 ∩ (X(n+1), 1) represents each such
point as the typical point.
Recall that, by Campbell’s formula,

∑︂

x∈G1

1(x) =

∫︂ 1

0
λG1(t)dt =

∫︂ 1

0
κ̃/tdtw = ∞.

Hence, the total set of points in a realization of G1 has, a.s., countable
infinite cardinality: there is no “the smallest point of G1” (as much as there
is a “the most distant point from the origo” in the homogeneous PPPΦ ⊂ R2).
Hence, n can be made arbitrarily large.
By the conditional independence of the location of X we can deduce the

CCDF with the conditioned Xn+1 = xmin ∈ (0, 1) by

P(X{n} > x|Xn+1 = xmin) =

∫︁ 1
x λ(t)dt

∫︁ 1
xmin

λ(t)dt
=

∫︁ 1
x 1/tdt

∫︁ 1
xmin

1/tdt
=

log(x)

log(xmin)

for x ∈ (xmin, 1), P(X > x|Xn+1 = xmin) = 1 for x ≤ xmin, and
P ( X > x | Xn+1 = xmin) = 0 for x ≥ 1.
By the tower rule and the expectation value integral identity for the CCDF,

the mean is

E(X{n}) = EXn+1

(︂
EX{n}(X{n}|Xn+1)

)︂

= EXn+1

(︄∫︂ 1

Xn+1

P(X{n} > x|Xn+1)dx+ Xn+1

)︄
.

Further, after evaluating the integral, utilize the PDF of Xn+1 from (3.35):

E(X) = EXn+1

(︃
Y(n) − 1

log(Y(n))

)︃
=

∫︂ 1

0

y − 1

log(y)
fXn+1(y)dy,

which can be evaluated with the help of symbolic software tools.
The second moment is obtained similarly by acquiring the second con-

ditional moment, EX{n}(X
2
{n}|Xn+1), from the well-known integral identity

EX{n}(X
2
{n}|Xn+1) = 2

∫︁ 1
0 xP(X{n} > x|Xn+1)dx and ultimately taking the

expectation over Xn+1.

Remark (Homogeneous PPP as a limiting process of a BPP). Although well-
defined, the distribution function (3.39) of X{n} ∈ G1 is degenerate in the
limit n → ∞. Intuitively, this is due to the unboundedly large area of spatial
spread with the uniform spatial appearance probability (Properties (IV),
Thm. 3.2.1) of the corresponding, projected, planar point Y{n} ∈ Φ, which
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has an increasingly high probability of being far away from o as n increases
and points unboundedly far appear in the set of n nearest points. 3 However,
even though the probability that an individual point falls near o (or at any
region) gets arbitrarily small for an arbitrarily large n, distributing n < ∞
points—through the appropriate logarithmic mapping (0, 1) → R2 of the
n-point realization of the GP produced by the law (3.39) combined with
uniformly distributed directions—will, of course, lead to a point realization
around the origo, which looks typical to the planar homogeneous PPP (in a
bounded window).
Note that, as it should, (3.37) and (3.38) approach the expected value

of the AWN-total-interference; (3.32) and (3.33), respectively, as n → ∞.
Furthermore, one can confirm that (1 + ΛG1((x, 1))/n)

n equals the void
probability (3.36) as n → ∞.

Finally, we are ready for the result to prove that the CLT applies to the
AWN-total-interference.

Theorem 3.4.4 (AWN-total-interference is Gaussian). Assuming WN sig-
nals for the signal sources (NTN terminals), i.e., if the typical h is a non-
degenerate r.v. of mean 0 and PSD E(h2) < ∞, the AWN-total-interference
I =

∑︁
x∈G1

hxx satisfies Lindeberg’s condition, implying that the CLT holds.
Hence, the AWN-total-interference has a Gaussian distribution with a mean
µ = E(I) = κ̃E(h) = 0 and a variance σ2 = var(I) = E(I2) = κ̃E(h2)/2.
Equivalently, the variance is σ2 = κ̃E(h2) with the interpretation of κ̃

reflecting the average number of transmitters inside the −3 dB power
footprint; see the remark of Theorem 3.3.6.

Proof. Without loss of generality, let us assume E(h2) = 1. While referring
to Lemma 3.4.3 and the identities (3.37) and (3.38), X{n} ∈ G1 ⊂ (0, 1) is the
typical point in the non-ordered set of i.i.d. points nearer than the (n+ 1)th
nearest neighbor to the boresight 1 ∈ (0, 1]. The Lindeberg condition is
satisfied if

lim
n→∞

1∑︁n
k=1 E(h2X2

{n})

n∑︂

k=1

E

⎛
⎝h2X2

{n}1

⎛
⎝|hX{n}| > ϵ

⌜⃓
⎷⃓

n∑︂

k=1

E(h2X2
{n})

⎞
⎠
⎞
⎠

= lim
n→∞

1

nE(X2
{n})

nE
(︂
X2
{n}1

(︂
|hX{n}| > ϵ

√︂
nE(X2

{n})
)︂)︂

= 2/κ̃ lim
n→∞

nE
(︂
X2
{n}1

(︂
X{n} > ϵ

√︁
κ̃/2/|h|

)︂)︂
= 0 for all ϵ > 0. (3.40)

Re-denote ϵ1 ≜ ϵ
√︁

κ̃/2. Conditioning h by the tower rule, (3.40) is satisfied
if

Eh

[︂
lim
n→∞

nE
(︂
X2
{n}1

(︁
X{n} > ϵ1/|h|

)︁ ⃓⃓
h
)︂]︂

= 0 for all ϵ1 > 0.

3“Appear” means here the farthest nth point observed in some of the numerous
point realizations within reasonable computation time in a real-world Monte Carlo
simulation of the PPP.
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But for any conditioned ϵ1/|h| = ϵ1/t > 0, by conditional probability, and by
(3.37) and (3.38),

lim
n→∞

nE
(︂
X2
{n}1

(︁
X{n} > ϵ1/t

)︁)︂
= lim

n→∞
nE(X2

{n}
⃓⃓
X{n} > ϵ1/t)P(X{n} > ϵ1/t)

≤ lim
n→∞

E(X2
{n})nP(X{n} > ϵ1/t) = − lim

n→∞
κ̃/(2n)κ̃ log(ϵ1/t) = 0,

which concludes the proof.

Remark (Interpretation of the Gaussian statistics). Let us carefully discuss
the interpretation of the Gaussian signal statistics. Theorem 3.4.4 applies
only in the sense of an ensemble average of Φ. On the contrary, should
we consider the “temporal” signal statistics stemming from a determinis-
tic non-changing realization of signal source terminals, the CLT does not
generally apply: the Gaussian model for the AWN-total-interference should
be applied with caution with an understanding of the underlying signaling
assertions and the—usually cross-related—spatial and temporal phenomena,
such as bandwidth, frequency band, fading, Doppler effects, mobility of the
transmitters (NTNs), signal correlation characteristics, signal response at
the receiver, etc. An ensemble-average-model-without-a-temporal-structure
interpretation may be reasonable under a wide-band-type assumption, in
which the aggregate signal stems from short-living signals and the transmit-
ters appear and go silent sequentially multiple times over a period during
which the satellites can be considered practically non-mobile during the
use period (vis-à-vis the mobility of the Earth terminals is even more negli-
gible), or with a medium acces control such as ALOHA that shuffles densely
located transmitters rapidly. However, under the narrow-band assumption
without ALOHA, when the transmitters do not appear and go silent that fre-
quently, the interference waveform distribution is not necessarily Gaussian
at each spatial location (c.f., Figures 3.4-3.8). In both cases, the Gaussian
waveform (ensemble) statistics can be interpreted in the ergodic sense as
a temporal average over a deterministic realization of the NTN terminal
locations while the LEO BSs are mobile. In the latter case, the limited
orbital speed causes temporal signal correlation because of the definite
signal terminal locations. Hence, in the narrow-band communications, a
temporal correlation structure is inherent and a crucial part of the AWN
total interference—with an exception in the case of extremely slow (regard-
ing the applications, maybe unreasonably slow) signal sampling frequency,
which is at least the time interval it takes for the typical LEO BS to move to
an non-overlapping served footprint. In this regard, due to the ergodicity
of the homogeneous PPP, the AWN-total-interference statistics equal the
ensemble average after a sufficiently long time of movement. A combination
of both the ensemble- and ergodic-sense interpretations is also possible.
By Theorem 3.4.4, the signal with the described temporal structure is a
stationary Gaussian process.

89



Non-temporal analysis of the narrow-beam LEO

As already discussed, Theorem 3.4.4 entails that the interference wave-
form is a Gaussian process if the statistics include a sufficiently encompass-
ing spatial and/or temporal observation period during which the LEO BSs
(and possibly the Earth NTN terminals) move and/or as distinct terminals
subsequently appear and transmit, and go quiet. Figures 3.4e, 3.5e, 3.6e,
and 3.7e demonstrate how the ensemble averages differ from the average
over a single realization of the Earth terminals for different WN signals: for
binary phase-shift keying (BPSK), i.e., the typical transmission g ∈ {−1, 1}
with even probabilities in each sample, and for normalized AWGN interferer
waveforms. Despite being non-exact given a deterministic NTN terminal
realization, a Gaussian waveform model for the AWN-total-interference can
be generally reasonable for sufficiently large densities (although the vari-
ance fluctuates); c.f., Figures 3.5a-3.5d and 3.7a-3.7d. For small densities,
the signal distribution varies remarkably; however, in the case of AWGN
signals, the total interference has, empirically, Gaussian statistics when
conditioned on a deterministic transmitter realization; c.f., Figures 3.6a-
3.6d. On the other hand, for BPSK, the variation in interference distribution
shape is prominent over spatial realizations and does not generally exhibit
(at least non-mixture) Gaussian behavior; see Figures 3.4a-3.4d. However,
in the presence of multipath fading gain, the interference waveform dis-
tributions can be near-Gaussian statistics for small densities; c.f., Figures
3.8a-3.8d. Furthermore, phase shifts (which are not modeled in the figures
but are realistically present) in the received BPSK signals introduce addi-
tional randomness, and the use period waveforms will resemble a Gaussian
distribution more.
With knowledge of the fluctuation statistics of the power distribution over

the NTN terminal realizations (as studied in Figures 3.2-3.3), mixture or
compounded Gaussian distributions can be reasonable for modeling the
aggregate random interference signal waveform within a use period over
the layouts of interfering NTN terminal locations. The gamma distribution
model with mean and variance κ̃, κ̃/2, respectively, is a feasible approxima-
tion in general fading environments for the power (averaged over a use
period) distribution of the AWN total interference.
In Figures 3.4− 3.7, the parameter values κ̃ ∈ {1, 5}, which determine the

density of the interferers, correspond to {1, 5}× log(2) uplink NTN terminals
on average in the −3 dB footprints of the LEO BSs, respectively.
The CLT does not generally apply to the distribution if the WN assumption

is not made. A counterexample is the gamma power distribution for Rayleigh
fading (3.59), which follows the Gaussian distribution only asymptotically
as the density of the transmitters goes to infinity (sufficiently, κ̃ → ∞).
.
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(a) A G1 (κ̃ = 1) realization and BPSK signals.(b) Another spatial NTN terminal realization.

(c) Third realization. (d) Fourth realization.

(e) The compound distribution over the realizations is Gaussian of variance 1.

Figure 3.4. The AWN-total-interference statistics over single versus over the
entire ensemble of small-density NTN terminal p.p. with the GP
parameter κ̃ = 1. The individual transmission responses are i.i.d.
BPSK symbols.
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(a) A G1 (κ̃ = 5) realization and BPSK signals.(b) Another spatial NTN terminal realization.

(c) Third realization. (d) Fourth realization.

(e) The compound distribution over the realizations is Gaussian of variance 5.

Figure 3.5. The AWN-total-interference statistics over single versus over the
entire ensemble of high-density NTN terminal p.p. with the GP pa-
rameter κ̃ = 5. The individual transmission responses are i.i.d. BPSK
symbols.
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(a) A G1 (κ̃ = 1) realization and AWGN signals.(b) Another spatial NTN terminal realization.

(c) Third realization. (d) Fourth realization.

(e) The compound distribution over the realizations is Gaussian of variance 1.

Figure 3.6. The AWN-total-interference statistics over single versus over the
entire ensemble of small-density NTN terminal p.p. with the GP
parameter κ̃ = 1. The individual transmission responses are i.i.d.
AWGN.
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(a) G1 (κ̃ = 5) realization and AWGN signals. (b) Another spatial NTN terminal realization.

(c) Third realization. (d) Fourth realization.

(e) The compound distribution over the realizations is Gaussian of variance 5.

Figure 3.7. The AWN-total-interference statistics over single versus over the
entire ensemble of high-density NTN terminal p.p. with the GP param-
eter κ̃ = 5. The individual transmission responses are i.i.d. AWGN.
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(a) A G1 realization and fading BPSK signals.(b) Another spatial NTN terminal realization.

(c) Third spatial realization, i.e., use period. (d) Fourth use period.

(e) The compound distribution over the realizations is Gaussian of variance κ̃ = 1.

Figure 3.8. The AWN-total-interference statistics over single versus over the
ensemble of low-density NTN terminal p.p. realizations (use periods)
with the GP parameter κ̃ = 1. Each transmission response is i.i.d.
Rayleigh faded BPSK.
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3.5 Factorial moment measure

Let Ψ ⊂ R be a p.p. (not necessarily Poisson). The nth factorial moment
measure is defined as

M (n)(t1, . . . , tn) ≜ M (n)((t1,∞), . . . , (tn,∞))

≜ E

⎛
⎝ ∑︂

(x1 ̸=,..., ̸=xn)∈(Ψ)×n

n∏︂

j=1

1(xj > tj)

⎞
⎠ . (3.41)

The density of the nthfactorial moment measure is given as the derivative

µ(n)(t1, . . . , tn) ≜ (−1)n
∂nM (n)(t1, . . . , tn)

∂t1 . . . ∂tn
. (3.42)

Example 3.5.1 (Density of the factorial moment measure of the GP). Since
the point in the PPP has no interaction, the density of the nth factorial
moment measure of the GP is given by the multiplication

µ
(n)
G (t1, . . . , tn) = (−1)nλG(t1)× · · · × λG(tn), (3.43)

and the moment measures are given correspondingly with the n-dimensional
integral

M (n)(t1, . . . , tn) = (−1)n
∫︂ ∞

t1

λG(x1)dx1 × · · · ×
∫︂ ∞

tn

λG(xn)dxn. (3.44)

3.5.1 Order statistics

Let x(i) ∈ Ψ ⊂ R denote the ith largest point in a p.p. Ψ. The order statistics
of are denoted as

x(1) > x(2) > x(3) > . . . . (3.45)

The following Lemma is useful [33, Lemma 5.3].

Lemma 3.5.1 (Joint probability distribution function of the order statistics).
Let Ψ ⊂ R be a simple p.p. Should the following expression exist in the
support of Ψ, the joint PDF of the nth order statistics is

f(n)(x1, . . . , xn) =

∞∑︂

k=0

(−1)k

k!

∫︂ ∞

xn

· · ·
∫︂ ∞

xn

µ(n+k)(x1, . . . , xn, ξ1, . . . , ξk)dξ1 . . . dξk (3.46)

whenever x1 > x2 > · · · > xn in the support of Ψ and 0 otherwise.

Corollary 3.5.2 (Order statistics of the GP). Let us assume
∫︁∞
x λG(t)dt < ∞

for all x (within the support of λG(·)). The order statistics of the n largest
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points in G are characterized by the PDF

f(n)(x1, . . . , xn) =

(︄ ∞∑︂

k=0

(−1)k

k!

(︃
−
∫︂ ∞

xn

λG(t)dt
)︃k
)︄

n∏︂

i=1

λG(xi)

= e−
∫︁∞
xn

λG(t)dt
n∏︂

i=1

λG(xi), (3.47)

in the region x1 > x2 > · · · > xn, each xi within the support of λG(·), and
f(n)(x1, . . . , xn) = 0 otherwise.

Example 3.5.2 (Order statistics of the GP with deterministic h). Let us
assume the GP with deterministic h = 1 (Fh(·) is a step function). The order
statistics of the n largest points in G1, recalling that λG1(x) = κ̃/x|x∈(0,1),
are characterized by the PDF

f(n)(x1, . . . , xn) = xκ̃n

n∏︂

i=1

κ̃

xi
, (3.48)

with the support 1 > x1 > x2 > · · · > xn > 0.

Example 3.5.3 (Order statistics of the SNR of the two strongest transmitters
in a LEO downlink). The probability that the largest two point values (or two
strongest scaled SNRs) x(1), x(2) ∈ G1 reach the thresholds 1 > τ1 ≥ τ2 > 0

is equivalent to the probability of the event A = {{x(1) > τ1} ∩ {x(2) > τ2}};

P(A) =

∫︂ 1

τ1

∫︂ x

τ2

f(2)(x, y)dydx =

∫︂ 1

τ1

∫︂ x

τ2

yκ̃
κ̃2

xy
dydx = 1− τ κ̃1 + τ κ̃2 κ̃ log(τ1).

(3.49)

Note that the random h is not incorporated here (such as fading or shad-
owing); hence, the spatially nearest transmitter to the origo in the homo-
geneous PPP Φ ⊂ R2, sufficiently and necessarily, “has the strongest SNR”
x(1) ∈ G1.

3.6 Signal-to-interference-plus-noise ratio

In this and the following sections, we study the SIR and SINR distributions
in a narrow-beamed LEO BS network. In line with Publication I-Publication
IV, we may refer to an uplink transmission with the omnidirectional Earth
transmitters. However, the system model is also applicable to downlink,
considering that the LEO BS footprints are located on the Earth surface
according to the homogeneous PPP. Furthermore, because the scenarios
are symmetric in the planar system model, the Earth transmitters can be
considered to have a narrow beam, and the LEO BSs an omnidirectional (or
perfectly aligned) antenna pattern in the uplink and downlink scenarios.
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Recall the total interference I,

I ≜
∑︂

x∈G
gxx =

∑︂

x∈G1

gxhxx, (3.50)

where {hx} and {gx} are i.i.d. r.v’s. One natural interpretation is that
the typical h (which can be incorporated in the density of G; see (3.25))
represents shadowing (slow-fading), and that g represents fast fading. An-
other meaningful adaptation of h (or g) is the non-temporal waveform
statistics modeling of a white noise signal with E(h) = 0 and finite power
var(h) = E(h2) < ∞, which can be multiplied by the random fading gain.
The Laplace transform of I is (3.29) for f(x) = x.
The signal to signal-to-interference-plus-noise ratio of the nth strongest

transmitter is

SINR(n) ≜
gx(n)

x(n)

I − gx(n)
x(n) +NSRo

=
gx(n)

x(n)∑︁
x∈G\{x(n)} gxx+NSRo

, x(n) ∈ G,

(3.51)
where g is an i.i.d. random fading variable, and the noise is represented
by the expected noise-to-signal ratio (NSR) of a transmitter at o; NSRo ≜
W/(d̂h,ϵ/d0)

−γ , whereW > 0 is the noise, and (d̂h,ϵ/d0)
−γ denotes the spatial

path loss with the path loss exponent γ and normalizing distance d0.
The signal-to-interference-ratio is defined as

SIR(n) ≜ (SINR(n)|NSRo = 0) =
gx(n)

x(n)∑︁
x∈G\{x(n)} gxx

, x(n) ∈ G. (3.52)

3.6.1 SIR of the nearest transmitter

Corollary 3.6.1. The SIR r.v. SIRNT
(1), which is defined as the SIR of the

Nearest Transmitter (equivalently, the transmitter with the strongest signal
power averaged over both fading variables) x(1) ∈ G, has the distribution
function

P(SIRNT
(1) > t) = P(Hx(1)/I > t), (3.53)

where Hx1 is a general fading r.v. of the nearest transmitter (possibly
different from the interferers). With an exponential Hx1 ∼ exp(1), 4

P(SIRNT
(1) > t) = LI(t), (3.54)

where LI(t) is given in (3.29) by the substitution f(x) = x.
Furthermore, (3.53) implies that the distribution of the SIR of the nearest

transmitter does not depend on the conditional distribution of the location
of the nearest transmitter. The property entails that the served UE can
belong to the same PPP as the interferers or not, yet the statistics of the
SIR are equivalent. This is a unique property of the GP.
4The result is related to the relation between the interference-to-(average)-signal
ratio (ISR) and the Laplace transform of the interference in the terrestrial networks
[16][Laplace transform of the coverage probability].
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Proof. Let us mark the h and g separately for the interferers, but we denote
the fading of the nearest transmitter only by Hx1 , although it can represent
any r.v. including the composition of shadowing and fast fading.

1/SIRNT
(1) =

∑︁
x∈G1\{x(1)} gxhxx

Hx(1)x1
=

∑︂

x∈Φ\{x1}
gxhxe

a(∥x∥2−∥x(1)∥2)/Hx(1)

(a)
=

∑︂

x∈Φ\{x}
gxhxe

a(∥x∥2−∥o∥2)/Hx(1)

(b)
=
∑︂

x∈Φ
gxhxe

a∥x∥2/Hx(1) =
∑︂

x∈G1

gxhxx/Hx(1)

=
∑︂

x∈G
gxx/Hx(1) = I/Hx(1) ,

where (a) follows from the basic property of the homogeneous PPP {∥x(i)∥2−
∥x(1)∥2}i∈{2,...,∞}, x(i) ∈ R2, (indeed homogeneous; see [29, Example 2.9])
on the reals that ∥x(n)∥2 − ∥x(1)∥2 is distributed according to the Erlang
distribution regardless of x(1). (b) is Slivnyak’s theorem.
(3.54) is the standard result; the expectation of the CCDF of an exponential

Hx(1) : P(Hx(1) > tI) = EI(e
−tI) = LI(t).

As stated, quaint to the GP, (3.53) contains the insight that the SIR is
independent of the nearest transmitter x(1) ∈ G1: we can condition its
position in G1 ⊂ (0, 1) (or equivalently in Φ ⊂ R2) to have an arbitrary
distribution, including deterministic, and the distribution is equivalent
to the SIR with the nearest transmitter being part of the same PPP as
the interferers: The distribution of the SIRNT

(1) is entirely characterized by
Hx(1)/I.
The exponential H(1) is analytically most tractable in the SIR analysis, as

demonstrated in (3.54): then the SIR of the nearest transmitter is directly
characterized by the Laplace transform of I. For more general fading, we
can, e.g., develop g with exponential terms, as done in Publication III for a
gamma r.v., representing the power fading, i.e., Nakagami amplitude fading.
Alternatively, one can seek to obtain the distribution function of I/Hx(1)

(or Hx(1)
/I) by using whatever methods are available for the solution, e.g.,

through characterizing the Laplace transforms of I and Hx(1)
. For example,

the PDF of the I can be acquired by the Plancherel-Parseval Theorem
[15][Thm. C3.3, p. 157], and the distribution function of the SIR follows
from (3.53);

P(SIRNT
(1) > θ) = P(Hx(1)

> θI)

=

∫︂ ∞

−∞
LI(2iπθs)

LHx(1)
(−2iπs)− 1

2iπs
ds, i2 = −1. (3.55)

We introduced the symbol θ, by which we usually refer to the threshold
for a successful transmission: the CCDF evaluated at θ is the transmission
success probability.
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Although precise analysis is feasible as described, for computational
efficiency and better insight, the following simple expression might satis-
factorily approximate the SIR distribution under general fading settings.
Let us consider exponential fast fading and no shadowing; G = G1 and
g ∼ exp(1) in (3.61), i.e., we assume Rayleigh fading. From then on, for
simplicity, we denote x(1) = x1.

Proposition 3.6.2 (Fairly general approximation of the SIR distribution
in the narrow-beam LEO). For Rayleigh fading, the SIR of the nearest
transmitter x1 ∈ G1 has the distribution function

P(SIRNT
1 > t) = (1 + t)−κ̃, (3.56)

which is a heavy-tailed Lomax distribution. Furthermore, for general
Rician and Nakagami fast fading channels, the Lomax distribution approxi-
mation of the SIR is tight in the simple coverage region, i.e., for t ≥ 1.

Proof. For the exponential power fading, i.e., the Rayleigh fading,Hx1 = g ∼
exp(1), using (3.54) yields P(SIRNT

1 > t) = LI(t) = (1 + t)κ̃. Furthermore,
the approximation applies to Nakagami-m fading, where m ≥ 1 is the
Nakagami fading parameter, as shown in Publication III (see Figure 6).
As the Nakagami fading is close to Rice fading by matching the first two
moments of the power fading distribution (see Figure 2.10), Rice fast fading
is also feasible.

3.6.2 SINR of the nearest transmitter

We generalize Proposition 3.6.2 to encompass the noise (or side lobes).

Proposition 3.6.3 (Fairly general approximation of the SINR distribution
in the narrow-beam LEO). Under Rayleigh fading, the SINR of the nearest
transmitter x1 ∈ G1 has the distribution function

P(SINRNT
1 > t) = (1 + t)−κ̃Eκ̃+1(NSRot)κ̃. (3.57)

Furthermore, for general Rician and Nakagami fast fading channels, this
tightly approximates the SINR distribution of SINRNT

1 in the simple coverage
region.

Proof. Let Hx1 = g ∼ exp(1).

P(SINRNT
1 > t) = P

(︄
gx1 >

∑︁
x∈G1\{x1} gxx

x1
+

NSRo

x1

)︄

(a)
= P

⎛
⎝gx1 >

∑︂

x∈G1

gxxt+
NSRo

x1
t

⎞
⎠ (b)

= E
(︃
e
−∑︁

x∈G1 gxxt−NSRo
x1

t
)︃

(c)
= E

(︂
Eg

(︂
e
−t

∑︁
x∈G1 x

)︂
E
(︂
e−NSRo/x1t

)︂)︂
(d)
= E

∏︂

x∈G

1

1 + tx
Eκ̃+1(NSRot)κ̃,
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and the result follows. In (a), please refer to the proof of the Corollary
3.6.1 that we can re-denote

∑︁
x∈G1\{x1} /x1 =

∑︁
x∈G1

x. (b) is the CCDF of
the exponential distribution. In (c), please refer to the proof of Corollary
3.6.1 to consider the sum independent of x1. In (d), we use the PGFL of I
with the exponential power fading and the Laplace transform of 1/x1.

Figure 3.12 shows the SIR and the SINR Lomax distribution approxima-
tions (3.56) and (3.57) (exact for Rayleigh fading) for various noise values
and the GP parameter κ̃ = 1.

Figure 3.9. The SINR distribution at the LEO BS with various noise magnitudes
NSRo ∈ {1, 1/10, 1/100, 0} = {0,−10,−20,−∞} dB and κ̃ = 1. The
axes scales are logarithmic (log-log plot), revealing the asymptotic
power law behavior as NSRo → 0.
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3.6.3 SIR of the strongest transmitter and SIR order statistics

In this section, we study the SIR statistics associated with the strongest
transmitter rather than the spatially nearest transmitter. Under shadowing,
the strongest-signal association is sensical because the LEO BSs directly
observe the signal strengths rather than the spatial locations of the trans-
mitters. Note that the nearest transmitter is necessarily the strongest
signal only in the event when SIR equals or exceeds unity at the LEO BS.
Such a coverage threshold region is called the simple coverage region,
where the term "simple" embodies that the strongest-signal SIR analysis
gets significantly more complex when evaluating link performance metrics
for SIR thresholds below 1. The distinction between the simple coverage re-
gion and analytically complex region has already been observed with some
approximate simple distributions, which are tight in the simple coverage
region but less accurate outside the region, as is the case with the Lomax
and suppressed Lomax distribution approximations of the SIR and SINR
for general fading in (3.56) and (3.57), respectively. The order statistics of
the strongest transmitters discussed in this section will further confirm this
complexity separation, possibly even in a more concrete sense.
For the section, we consider only shadowing; g = 1 in (3.61)—the “only

shadowing” referring to the assumption that no fast fading fluctuation is
considered during the use period over which the typical LEO BS is connected
to the strongest shadowed signal (although there is no mathematical reason
why this “shadowing” could not be seen as fast fading).
For analytical tractability and insightful results, while still maintaining

appropriate accuracy, we propose a defective exponential fading model,
h ∼ expν(1), for modeling Gaussian mixture shadowing. The (normalized)
defective exponential r.v. is defined by the CCDF

F (t) = νe−t, 0 < ν ≤ 1. (3.58)

Note the atomic probability measure at zero; ν: its complement corresponds
to a case where the signal is entirely attenuated. Recall, 1: by moment
matching, the defective exponential fading can be used to approximate a
general shadowing distribution, say, the Mixture Gaussian shadowing. ν
is proportional to the LoS probability; however, it is not necessarily equal
(see Publication IV).
The defective exponential satisfactorily models the SIR statistics in log-

normal shadowing by matching the mean and the variance of I; see (3.32)
and (3.33). Through the approximation, we can identify the random process
of the total interference with the gamma process, and further, the SIRs
with the Poisson-Dirichlet process. These insights enable us to exploit
the results of these well-studied processes.
The total interference follows the gamma distribution under the defective

exponential fading. Namely, similarly to (3.34): the Laplace transform of I
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with the defective exponential fading is

LI(s) = (1 + s)−κ̃ν , (3.59)

which is is the gamma distribution with the shape parameter κ̃ν.
The signal-to-total-interference (STIR) process is useful in the study of

order statistics. For each n ∈ {1, . . . ,∞},

STIRn ≜ xn
I

=
xn∑︁
x∈G x

, xn ∈ G. (3.60)

Note that STIRn ∈ (0, 1). The SIR process can be recovered from the SIR
process as

SIRn =
STIRn

1− STIRn

. (3.61)

Next, we derive the factorial moment measure of the STIR process.

Theorem 3.6.4. Using the defective exponential shadowing, the density of
the nth factorial moment measure of the STIR process is

µ′(n)(z′1, . . . , z
′
n) = (κ̃ν)n

n∏︂

j=1

z′−1
j

⎛
⎝1−

n∑︂

j=1

z′j

⎞
⎠

κ̃ν−1

, (3.62)

whenever z′1 > · · · > z′n and
∑︁n

i=1 z
′
j ≤ 1, and 0 otherwise.

Proof. We directly refer to [71, Eq. 8]: As the total interference follows the
gamma distribution (3.59), I can be interpreted as a gamma process at time
κ̃ν. The normalized increments {STIRn : xn ∈ G} = {xn/I : xn ∈ G} follow
the Poisson-Dirichlet distribution PD(0, κ̃ν), which has the given density.

The density of the nth moment measure of the SIR can be derived as
[16][Corollary 6.1.3]

µ(n)(z1, . . . , zn) =
n∏︂

j=1

1

(1 + zj)2
µ′(n)

(︃
z1

1 + z1
, . . . ,

zn
1 + zn

)︃
, (3.63)

where µ′(n) (z′1, . . . , z
′
1) is the density of STIRn. In the following, we derive

µ′(n)(·).

Definition 3.6.1 (n-probability). Let f ′(·) denote the joint PDF of the STIR
process. Let θ′ = 1/(1 + θ). Define the n-probability as the probability that
the first n strongest transmitters reach the SIR threshold θ:

Pn(θ) ≜
∫︂ 1

θ′
· · ·
∫︂ 1

θ′
f ′(z′1, . . . , z

′
n)dz

′
1, . . . dz

′
n

=

∫︂ 1

θ′
· · ·
∫︂ 1

θ′

imax∑︂

i=0

(−1)i

i!
×

∫︂ 1

z′n

· · ·
∫︂ 1

z′n

µ′(n+i)(z′1, . . . , z
′
n, ξ1, . . . , ξi)dξ1 . . . dξidz

′
1, . . . dz

′
n, (3.64)
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where imax < 1/θ′ − n is a restriction to non-zero terms (that potentially
can be relaxed), which follows from the directly from the conditioning of
µ′(k)(·).

The evaluation of (3.64) is not generally trivial due to the complicated
integral of non-static dimensional µ′(n+i)(·). Please find an Octave code
utilizing Monte Carlo integration at the end of this section.

Example 3.6.1. Combining (3.46), (3.63), and (3.62), we can derive the
PDF of the SIR of the strongest transmitter (c.f., the nearest transmitter in
Corollary 3.6.1) in the simple coverage region z ≥ 1:

− d

dz
P(SIR1 > z) = f(z) = µ(1)(z) =

1

(1 + z)2
µ′(1)

(︃
z

1 + z

)︃

=
κ̃ν

(1 + z)2
1 + z

z

(︃
1− z

1 + z

)︃
=

κ̃ν

(1 + z)−κ̃νz
. (3.65)

In terms of the hypergeometric function 2F1(·), in the simple coverage
region the CCDF can be derived through integrating f(z):

P(SIR1 > z) = z−κν̃
2F1(κν̃;κν̃;κν̃ + 1;−1/z). (3.66)

Notably, this is close to the Lomax distribution in the tail distribution (c.f.,
(3.56)) and approaches it tangentially. Formally, P(SIR1 > z) ∼ (1 + z)−κ̃ν

as z → ∞. For z = 1; P(SIR1 > z) > (1 + z)−κ̃ν—this reflects the property
that, instead of averaging over the fading of the nearest transmitter when
the deep fades can cause significant drops in the SIR, SIR1 describes the
SIR continuously associated with the strongest signal, thus improving the
average SIR performance at the LEO BSs (but not necessarily from the
perspective of each user).

In light of the model, comparing (3.66) to the Nakagami fast fading chan-
nel in (3.56), shadowing can be detrimental or beneficial compared to the
non-shadowed case, depending on the shadowing parameter ν.

Variance of the SIR and the Quality of Service
Let us dedicate a section to the study of the variance of the SIR of the
strongest transmitter at the typical LEO BS. The question is interesting:
fluctuations in the SIR affect the stability of the duality of derive (QoS)
as seen by users. For high variance, the variation in the QoS, or user
experience, across the network is high and vice versa (as always, recalling
the ergodic interpretation of the typical point in the homogeneous PPP).
While the SIR in the standard terrestrial network stochastic geometry
models is not dependent on the network density (although high density
means high interference, the strongest transmitter is more likely to be near
its serving BS and the density cancels out), in the LEO networks, especially
with narrow-beam LEO BSs, the density of the (co-channel) terminals in
the network has a profound effect in the statistics of the SIR.
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Recall 3.65, and derive a lower bound for the first moment as

E(SIR1
1,[1]) ≥

∫︂ ∞

1
f(z)zdz =

∫︂ ∞

1

κ̃ν

(1 + z)κ̃ν
dz =

21−κ̃ν κ̃ν

κ̃ν − 1
, κ̃ν > 1. (3.67)

For κ̃ν ≤ 1, the mean diverges.
Similarly, the second moment is lower-bounded by

E(SIR2
1,[1]) ≥

∫︂ ∞

1
f(z)z2dz =

∫︂ ∞

1

κ̃νz

(1 + z)κ̃ν
dz =

21−κ̃ν(κ̃ν)2

(κ̃ν − 1)(κ̃ν − 2)
, κ̃ν > 2,

(3.68)
which is divergent for κ̃ν ≤ 2.
Combining (3.67) and (3.68), we can derive the variance by the traditional

identity var(SIR1,[1]) = E(SIR2
1,[1])− E(SIR1

1,[1])
2. An immediate observation

is that the variance is undefined for κ̃ν ≤ 1 and infinite for κ̃ν ≤ 2. On the
other hand, the high expected SIR in region κ̃ν ≤ 2 might be desirable: this
is a trade-off between the QoS stability and average performance. In the
ergodic interpretation, this is a trade-off between stability and the average
QoS over the LEO BSs, i.e., a highly varying user experience across the
network in each use period. The variation in the QoS can be reduced by
interference cancellation.

3.6.4 Successive interference cancellation

By exploiting the order statistics of the STIR process, we develop a stochas-
tic geometry model of successive interference cancellation (SIC) in the LEO
networks of narrow-beam LEO BSs. In SIC—as referred to in this work—is
when the strongest transmitter is decoded first if it exceeded a minimum
SIR threshold, then the signal is cancelled from the interference. After this,
the second strongest transmitter is decoded and cancelled, etc. (The link-
level implementation details of the decoding and interference cancellation
schemes are not discussed.) We will show that the SIC profoundly reduces
the variance of the SIR, while maintaining robust performance. In other
words, QoS can be made stable by the SIC, and the tedious trade-off be-
tween user experience consistency and performance, discussed in Section
3.6.3, can be avoided.
Let (x1 . . . xn), xn ∈ G, represent an ordered set of points in the GP, where

x1 denotes the strongest signal at the typical LEO BS. The signals with
indices in the set [k] ≜ (1, . . . , k), k ≥ n, are cancelled from the total inter-
ference I. Denote the SIR of the nth strongest transmitter with interference
cancellation by

SIRn,[k] ≜
xn

I −∑︁j∈[k] xj
. (3.69)

Definition 3.6.2 (SIC-SIR). The SIR with successive interference cancella-
tion (SIC-SIR) is formally defined as follows. Let θ > 0 be the desired SIR
for a successful transmission after the interference cancellation, and τ ≤ θ

be the threshold of signal detection.
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A necessary condition for the transmission to be considered successful is

SIRn,[k] > θ, k ≥ n. (3.70)

This condition is not sufficient. The SIC-SIR consists of canceling signals
up to the index i ∈ [K], K > 0, until (3.70) is met or the maximum number
of interference cancellation steps i = K is reached. Each step entails the
superposition of the conditions

{SIRn,[k] > τ} for all k ∈ {1, . . . , n+ i− 1}. (3.71)

Remark. Although practical decoding schemes hardly so much as approach
complete certainty in any non-trivial (temporally finite signals under noise)
theoretical settings, even under the most idealistic assumptions, we implic-
itly model exact decoding of the transmitted, intended signals—only given
that the adequate SIR threshold τ is exceeded at the receiver end. (For the
SIR values τ < θ, the inferred interfering signal can not be anything but
a highly erroneous estimation—unless there is peculiar prior information
about all signals other than that of the served transmitter xn, or the coding
or modulation schemes differ.) Imperfect interference cancellation can be
modeled as a simple constant error term E ∈ (0, 1) with I−E∑︁j ̸=n xj , while
retaining intrinsically identical analysis, and no generality is lost in this
sense.

We already studied P(SIR1,[1] > (·)) in Section 3.6.3. Before the character-
ization of the distribution of the SIC-SIR, we formalize a general expression
for the distribution function of SIRn,[k].

Proposition 3.6.5 (CCDF of the nth SIR with interference cancellation).
Recall the STIR defined in (3.60), and define θ′ ≜ θ/(θ + 1). Given the
threshold θ > 0 of a successful transmission, the probability of coverage
with interference cancellation is

P(SIRn,[k] > θ) = P

⎛
⎝STIRn + θ′

∑︂

j∈[k]\{n}
STIRj > θ′

⎞
⎠ . (3.72)

Proof. The proof borrows [17][Eq. 69].
Recall the equivalence (3.61) of the SIR and STIR. We have

P(SIRn,[k] > θ) = P

(︄
xn

I −∑︁j∈[k] xj
> θ

)︄
= P

⎛
⎝xn > θI − θ

∑︂

j∈[k]
xj

⎞
⎠

= P

(︄
xn
I

> θ − θ

∑︁
j∈[k] xj
I

)︄
= P

⎛
⎝(1 + θ)STIRn + θ

∑︂

j∈[k]\{n}
STIRn > θ

⎞
⎠ ,

which proves the result.
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Corollary 3.6.6. Consider the SIC-SIR with at most K ≥ n interference
cancellation stages. Define τ ′ ≜ τ/(1 + τ). The coverage probability of the
UE with nth strongest signal is given by

P(n,K)
SIC (θ, τ) ≜

K∑︂

k=n

∆
(n,k)
SIC (θ, τ), (3.73)

where

∆
(n,k)
SIC (θ, τ) ≜

×
∫︂ 1

0
· · ·
∫︂ 1

0
f(k)(z

′
1, . . . , z

′
k)

k∏︂

m=1

1

⎛
⎝z′m + τ ′

m−1∑︂

j=1

z′j > τ ′

⎞
⎠

×

⎛
⎝1(k > n)1

⎛
⎝z′n + θ′

∑︂

j∈[k−1]\{n}
z′j < θ′

⎞
⎠+ 1(k = n)

⎞
⎠

× 1

⎛
⎝z′n + θ′

∑︂

j∈[k]\{n}
z′j > θ′

⎞
⎠ dz′1 . . . dz

′
k (3.74)

with the upper summation limit bounded by imax < 1/τ ′ − 1 = 1/τ .

Proof. The expression follows applying the joint PDF of the order statistics
(3.46) to Definition 3.6.2. Furthermore, the upper l.h.s. conditioning allows
the relaxation of imax. Namely, a necessary condition is z′k + τ ′

∑︁k−1
j=1 z

′
j > τ ′.

By simple algebra,
∑︁k−1

j=1 zj > 1−zk/τ
′. Recall the condition on the non-zero

terms of µ′(k+i):
∑︁k

j=1 z
′
j + iz′k =

∑︁k−1
j=1 z

′
j + z′k + iz′k ≤ 1. The condition

certainly does not hold if 1− zk/τ
′+ z′k + iz′k > 1. We arrive at the inequality

z′k (−1/τ ′ + 1 + i) > 0. Divide both sides by z′k > 0, and the general upper
bound of i follows.

The numerical evaluation of (3.73) is not trivial due to the complicated
integral of non-static dimensional µ′(n+i)(·). Please find an Octave code
utilizing Monte Carlo integration at the end of this section.

Numerical results
The theoretical SIR distribution with successive interference cancellation
is plotted in 3.10 for the first two transmitters. Further, the n-probabilities
(3.64) are plotted. At most K = 2 signals were canceled with a signal de-
tection threshold τ = −3 dB. The average number of effective transmitters
inside the −3 dB footprint κ̃ρ = 2, which, e.g., describes the Earth trans-
mitter density λ = 0.83× 10−4/km2, the LEO BSs in the altitude h = 1000

km at elevation angle ϵ = 70, with modeling a two-tier Gaussian mixture
shadowing having a LoS probability pLoS = 0.9 in an urban environment with
the means and variances µLoS = 0, µNLoS = −26 dB σ2

LoS = 42, σ2
NLoS = 62,

107



Non-temporal analysis of the narrow-beam LEO

respectively (by moment matching using Theorem 3.3.6). Please refer to
Publication IV for further details and results, with a comparison to simula-
tions of the spherical model and accurate log-normal shadowing.

Figure 3.10. The theoretical n-probabilities and SIR-SIC for the first two strongest
transmitters. log(2)κ̃ρ = 2 log(2) shadowed effective transmitters
inside the −3 dB footprint on average in an urban environment.
The plot indicates a clear improvement in the transmission success
probability after the successive interference cancellation, especially
for the second strongest transmitters. The numerical integration
method is a probabilistic Monte Carlo method; therefore, the plots
exhibit slight fluctuations.
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function Pn_theta = n_coverage_probability_monte_carlo_SIC(theta, n, SIC)

## Pn_theta: Joint pdf of the SIR and successive interference cancellation

## Input:

## theta: SIR threshold of a successful transmission

## n: transmitter’s index

## SIC: set ’0’ to evaluate the n-probability, otherwise evaluate SIC-SIR

K = max(n, 2); # Interference cancellation stages (K >= n)

M = 5e03; # M: number of Monte Carlo samples

tic # Measure and print the evaluation time

nukappa = 2; # "Tildekappa x nu" -parameter

tau = min(theta, 0.5); # Signal detection threshold (tau <= theta)

tau_prime = tau / (1 + tau);

## Integration lower bound

theta_prime = theta / (1 + theta);

## Upper bound for the series expansion of the joint PDF

imax = max(0,ceil(1 / theta_prime - n - 1));

## If n==1 and SIC == 0 evaluate the built-in numerical integration,

## which is much more efficient compared to the Monte Carlo method

## in the simple coverage region theta >=1

if n == 1 && theta >= 1 && SIC == 0 && true

mu_prime = @(t) nukappa ./ t .* (1-t) .^ (nukappa - 1);

Pn_theta = integral(mu_prime, theta_prime, 1);

## Else perform Monte Carlo integration over z’

else

Pn_theta = 0;

if SIC == 0;

Pn_theta = deltasic(n);

else

for k = n : K

Pn_theta = Pn_theta + deltasic(k);

endfor

endif

endif

toc

function res = deltasic(k)

## Initialize an array to store the calculated function values

deltasic_k_values = zeros(1, M);
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for iii = 1 : M

if mod(iii, 250) == 0

iii

end

## The conditioning and the integration region are defined separately

## without and with SIC

if SIC == 0

## Generate n random samples for z’ from the uniform distribution on

## (theta_prime, 1) and define the integration domain

z_prime_samples = theta_prime + (1 - theta_prime) * rand(1, k);

volume_of_domain = (1 - theta_prime) ^ k; #Integration domain volume

is_sorted = all(diff(z_prime_samples) < 0); # Sorting condition

cond = is_sorted;

else

## Generate n random samples for z’ from the uniform distribution

z_prime_samples = rand(1, k);

volume_of_domain = 1; #Integration domain volume

is_sorted = all(diff(z_prime_samples) < 0); # Sorting condition

## Condition 1

cumulative_sum = cumsum(z_prime_samples);

shifted_cumulative_sum = [0, cumulative_sum(1:end-1)];

condition_vector = z_prime_samples...

+ tau_prime .* shifted_cumulative_sum ...

> tau_prime;

cond1 = all(condition_vector);

## Condition 2

sum_part = sum(z_prime_samples(1:k-1)) - z_prime_samples(n);

cond2 = (k>n) * (z_prime_samples(n)...

+ theta_prime * sum_part < theta_prime) + (k==n);

## Condition 3

sum_part = sum(z_prime_samples(1:k)) - z_prime_samples(n);

cond3 = z_prime_samples(n) + theta_prime * sum_part > theta_prime;

cond = is_sorted * cond1 * cond2 * cond3;

endif

## Calculate the joint PDF f’_(n) for the current sample

## as the series expansion of the joint PDF

deltasic_value = 0;

for j = 0 : imax

if sum(z_prime_samples) + j * z_prime_samples(end) < 1 && cond

mu_prime_val = calculate_mu_prime(z_prime_samples, j);

else
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mu_prime_val = 0;

endif

term = ((-1) ^ j / factorial(j)) * mu_prime_val;

deltasic_value = deltasic_value + term;

end

deltasic_k_values(iii) = deltasic_value;

end

## Apply the Monte Carlo integration formula

average_deltasic_k = mean(deltasic_k_values);

res = volume_of_domain * average_deltasic_k;

endfunction

## A nested function for the mu_prime

function mu_prime_val = calculate_mu_prime(z_prime_vector, j)

z_prime_dim=length(z_prime_vector);

## z_prime_dim: The dimension of the z’ vector provided.

## i: The number of variables (zeta) to integrate over.

## nukappa: The parameter of the gamma process.

## z_prime_vector: The vector of n z’ variables (z’_1, ..., z’_n).

## M: The number of Monte Carlo samples.

## The integration domain for each zeta_j is [z’_n, 1].

z_prime_n = z_prime_vector(end);

## Calculate the volume of the integration domain

volume = (1 - z_prime_n) ^ j;

## Initialize a vector to store the values of the integrand

integrand_values = zeros(1, M);

## Perform M Monte Carlo samples

for index = 1 : M

## Generate ordered uniform r.v.’s in rectangle

zeta_samples = z_prime_n + (1 - z_prime_n) * rand(1, j);

zeta_samples=sort(zeta_samples,’descend’);

full_t_vector = [z_prime_vector, zeta_samples];

## Check if within the simplex.

sum_is_le_1 = sum(full_t_vector) <= 1;

if sum_is_le_1

## If conditions are met, calculate the value of the density
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product_term = prod(full_t_vector .^ (-1));

sum_term = sum(full_t_vector);

density_val = (nukappa) ^ (z_prime_dim + j) * product_term ...

* (1 - sum_term) ^ (nukappa - 1);

integrand_values(index) = density_val;

else

## If conditions are not met, the density is 0

integrand_values(index) = 0;

end

end

## Calculate the final integral value using the Monte Carlo formula

average_integrand = mean(integrand_values);

mu_prime_val = average_integrand * volume;

endfunction

endfunction

3.7 Meta distribution of the SIR

So far, we have considered the SIR distribution averaged over the fading
of the typical receiver. The meta distribution of the SIR (SIR MD)—first
introduced by Martin Haenggi for terrestrial networks in 2016 [30]—offers
a fine-grained analysis of the SIR distribution, providing information about
the fraction of time the SIR exceeds a given SIR during the (short) use
period at the receivers. Publication III analyses the meta distribution of
the SIR in a narrow beam LEO uplink with the Gaussian antenna pattern,
providing strikingly simple analytical, including closed-form, descriptions
of the SIR MD (as well as for the SIR and SINR distributions as already
discussed in Section 3.6.1 and 3.6.2; see Proposition 3.6.2).
In this section, we analyze the SIR MD in a Rayleigh fading setting, which

is the analytically most tractable case, but also reflect—at least in a qual-
itative sense—the behavior of the SIR MD in a general fading setting in
terms of variation in the quality of service (QoS) (also called; user expe-
rience) over the transmitters for different densities (sufficiently, different
κ̃). We derive the SIR MD moments and a beta distribution approximation
using moment matching. As a side product, a purely mathematical result
regarding the hypergeometric function is proposed. For more detailed and
numerical results, including comparison to the accurate spherical model in
a Nakagami-m fading setting, please refer to Publication III.
Let us define the conditional SIR distribution by

P(θ) ≜ P(SIR > θ|G1) = P(SIR > θ|Φ). (3.75)
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The SIR MD at the typical receiver is defined for 0 ≤ y ≤ 1 as

EΦ1(P(θ) > y) = EΦ1(P(SIR > θ|Φ) > y) = P(P(SIR > θ|Φ) > y). (3.76)

Recall the ergodicity of Φ, which allows a meaningful interpretation of the
SIR MD: The ensemble average equals the spatial average; hence, the SIR
MD describes the fraction of transmitters that reach the SIR threshold θ

fraction y of time at their serving LEO BSs in a uniform constellation, when
the fading varies during a short use period during which the terminals are
considered practically non-mobile.
Note that, should there be no fading, the SIR MD reduces to a single-

step function whose value on (0, 1) depends on the SIR threshold θ of a
successful transmission: either the connection at a receiver is permanent, or
it is permanently down during the modeled use period. The traditional SIR
distribution is formally an expectation taken over the GP and the fading;
P(SIR > θ) = EG1,h(P(SIR > θ|G1)) = EG(P(SIR > θ|G)) (recall that, as
defined in (3.19), the density of G encompasses the fading).
Define the moment b ∈ C of the SIR MD by

Mb(θ) ≜ E(P(θ)b). (3.77)

Theorem 3.7.1 (Moments of the SIRMD). The first twomoments, b ∈ {1, 2},
in the narrow-beamed LEO BS network at the typical receiver, when all
transmissions are experiencing Rayleigh fading, are given by

M1(θ) = (1 + θ)−κ̃ (3.78)

M2(θ) = e−κ̃θ/(1+θ)(1 + θ)−κ̃. (3.79)

For the general complex moments, b ∈ C,

Mb(θ) = exp

{︃
−κ̃

∫︂ 1

0

(︃
1− 1

(1 + θr)b

)︃
/rdr

}︃
(3.80)

= exp {−θκ̃b3F1(1, 1, 1 + b; 2, 2;−θ)} , (3.81)

where 3F1(1, 1, 1 + b; 2, 2; (·)) is the generalized hypergeometric function.
Furthermore, for b ∈ N, the hypergeometric function in the exponent of

(3.81) can be expressed as

logMb(θ) = −3F1(1, 1, 1 + b; 2, 2;−θ) =
κ̃

(b− 1)!

b∑︂

k=0

[︃
b

k

]︃
Li2−k(−θ), (3.82)

where
[︁
b
k

]︁
is the unsigned Stirling number of the first kind, and Li2−k(·) is

the polylogarithm. The representation is valid for θ ∈ C \ {−1}.

Proof. We prove (3.78)-(3.80). Although the first two moments, b ∈ {1, 2},
also follow directly from (3.81) (a black-box representation of (3.80) pro-
vided byMathematica®), they can be derived from (3.80) using elementary
algebra and integration methods, which we will demonstrate.
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We first derive (3.80). For the Rayleigh faded h with normalized power,
we have for a conditioned G1

P(θ) = P(SIR > θ|G1)
(a)
= Eh

⎛
⎝P

⎛
⎝h1 > θ

∑︂

x∈G1

hxx
⃓⃓
⃓G1

⎞
⎠
⎞
⎠

(b)
= Eh

(︂
e
−θ

∑︁
x∈G1 hxx

⃓⃓
⃓G1

)︂
(c)
=
∏︂

x∈G1

(︃
1

1 + θx

)︃
. (3.83)

In (a), we utilize the equation (3.53). In (b) and (c), we use the standard
CCDF and Laplace transform of the exponential r.v. h, respectively.
By taking the expectation over G1, using the PGFL of the GP, we have, by

(3.28), the following expression

E(P(θ)b) = E

⎛
⎝∏︂

x∈G1

1

(1 + θx)b

⎞
⎠ = GG1 (f)

with f(t) = (1 + θt)−b. This proves the result.
Next, we prove (3.78) and (3.79). For b = 1, the integral in (3.80) is given

by

=

∫︂ 1

0

(︃
1− 1

1 + θr

)︃
/rdr

=

∫︂ 1

0

θ

1 + θr
dr =

∫︂ 1+θ

1

1

u
du = log(1 + θ).

For b = 2,
∫︂ 1

0

(︃
1− 1

(1 + θr)2

)︃
/rdr

=

∫︂ 1

0

(︃
2θ

(1 + θr)2
+

θ2r

(1 + θr)2

)︃
dr

(a)
=

∫︂ 1

0

(︃
2θ

(1 + θr)2
− θ

(1 + θr)2
+

θ2

θ + θ2r

)︃
dr

=

∫︂ 1+θ

1

1

u2
du+ v

∫︂ θ+θ2

θ

1

v
dv =

θ

1 + θ
+ log(1 + θ).

In (a), we used the partial fraction expansion for the latter term in the
integrand.
Finally, we provide a proof for (3.82). Using the definition of the hyperge-

ometric series, for |θ| < 1 and b ∈ N,

3F2(1, 1, 1 + b; 2, 2;−θ) =

∞∑︂

n=0

(1)n(1)n(1 + b)n
(2)n(2)n

(−θ)n

n!

=

∞∑︂

n=0

(1 + b)n
(n+ 1)2n!

(−θ)n =
1

b!

∞∑︂

n=0

(n+ 1)b
(n+ 1)2

(−θ)n
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(a)
=

1

b!

∞∑︂

n=0

∑︁b
k=0

[︁
b
k

]︁
(n+ 1)k

(n+ 1)2
(−θ)n

=
1

b!

b∑︂

k=0

[︃
b

k

]︃ ∞∑︂

n=0

(−θ)n

(n+ 1)2−k

(b)
= − 1

b!

b∑︂

k=0

[︃
b

k

]︃
Li2−k(−θ)

θ
. (3.84)

In (a), we used the expansion of the rising Pochhammer factorial; in (b),
we used the definition of the polylogarithm. The expression generalizes
onto the region C \ {−1} ∋ θ through the analytic continuation of the
polylogarithm.

Remark. To the best of our knowledge, the interesting representation of the
generalized hypergeometric function (3.84) in terms of the polylogarithm
has not yet been introduced in the literature other than in the special case
b = 0 in the draft [18]—for which the steps in (3.84) provide an alterna-
tive proof. Furthermore, as a mathematical curiosity, the polylogarithm
has closed-form representations also for k ≥ 3 (see [90, Eq. (6.3)]), allow-
ing a closed-form expression for the generalized hypergeometric function
3F2(1, 1, 1 + b; 2, 2; (·)) for b ∈ N (although impractically complicated in the
scope of this thesis).

The following second-order moment approximation is sufficient in the
Rayleigh fading model.

Proposition 3.7.2 (Approximation of the SIRMDwith the beta distribution).
The parameters α and β for the beta distribution are given by the method
of moments as

α =

(︃
M1(θ)(1−M1(θ))

M2(θ)−M1(θ)2
− 1

)︃
M1(θ)

β =

(︃
M1(θ)(1−M1(θ))

M2(θ)−M1(θ)2
− 1

)︃
(1−M1(θ)), (3.85)

where M1(θ) and M2(θ) are given in (3.78) and (3.79), respectively. The
SIR MD can be approximated by the beta distribution

P(P(θ) > y) ≈

⎧
⎪⎪⎨
⎪⎪⎩

1− Iy(α, β), y ∈ [0, 1],

1, y < 0,

0, y > 1,

(3.86)

where I(·)(α, β) is the regularized incomplete beta function.

Figures 3.11a-3.11b show the beta distribution approximation of the SIR
MD for various θ and κ̃. The plots reveal that the experience of the link
quality is strongly dependent on the average number of transmitters inside
the −3 dB footprint. On the other hand, the link quality degrades for high
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densities, implying a significant trade-off between the user fairness and
the average performance. For denser networks, interference mitigation
should be implemented to achieve the same rates as in less dense networks:
This can, for example, entail successive interference cancellation. For more
results, such as the SIR MD in general Nakagami fading, and comparison
to simulations of the spherical model, please refer to Publication III.
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(a) κ = κ̃ log(2) = log(2) transmitters inside the −3 dB footprint on average.

(b) κ = 10 log(2). The variation in the link reliability is visibly smaller than in Figure 3.11a.

Figure 3.11. Figs 3.11a and 3.11b show the SIR MD beta distribution ap-
proximations for the SIR thresholds (from top to bottom) θ ∈
{−10,−3, 0, 3, 10} dB and θ ∈ {−20,−17,−13,−10,−3} dB, respec-
tively. 117
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3.8 Throughput and optimal constellation density

We can use Shannon’s formula to characterize the expected channel ca-
pacity, instantaneous bandwidth-normalized throughput, or the spectral
efficiency, defined by the formula T ≜ log(1 + SINR) [16, Eq. (7.19)]. While
a decoder designed for AWGN can be used in a receiver, incorporating
additional knowledge of the interference waveform statistics can improve
the encoding and decoding, leading to enhanced performance. By using the
Lomax distribution for the SIR distribution, one can evaluate the average
throughput in the interference-limited channel by

T =
1

log(2)

∫︂ ∞

0
P(SIRNT > et − 1)dt=

∫︂ ∞

0

(1 + v)−κ̃−1

log(2)
dv = 1/κ,

(3.87)

where, recall, κ = log(2)κ̃ is the average number of transmitters inside the
−3 dB footprints.
With noise, similar to (3.87), the average throughput is given by

T =
1

log(2)

∫︂ ∞

0
(1 + v)−κ̃−1Eκ̃+1 (NSR0v) κ̃dv. (3.88)

Furthermore, (3.87) and (3.88) closely approximate the throughput for
general Nakagami fading (and we put forward that this is the case under
fairly general conditions in an even larger category of fading distributions).
A widely recognized property of the LEO networks in their stochastic

geometry study is that there is an optimal density of transmitters (and
satellite constellation) that maximizes the performance (see, e.g., [42] and
[78]). This property is reflected in Figure 3.12. In the narrow-beam LEO, the
optimal density corresponds to log(2)

√
NSR0 transmitters on average in the

−3 dB footprints, where NSR0 is the noise-to-signal ratio of a transmitter
at the typical LEO BS boresight. If each transmitter is associated with one
LEO BS, this determines the optimal constellation density directly.

Remark. If we consider that only one Earth transmitter, let us refer to it as
user equipment (UE), is located within its serving SBS Voronoi cell, the aver-
age number of UEs inside the −3 dB footprints κ = log(2) (independently of
the elevation angle and altitude) provides the optimal density of co-channel
UEs that maximizes the average throughput and directly determines the
optimal satellite constellation density within this scenario. For example,
with the normalized noise W = (d̂ϵ,h/d0)

−γ (recall that d̂h,ϵ = h/ sin(ϵ) is
the distance between o ≜ (0, 0) ∈ R2 and the LEO BS, d0 is a normal-
izing distance, and γ is the path loss exponent—thus the noise w.r.t. to
the average signal strength of a UE at o is 0 dB) and given ϵ, the optimal
κ = log(2) determines the optimal λ and, further, the optimal density for
the satellite constellation, depending on the altitude of the orbits. For
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example, for ϵ = 90◦, h = 200 km and φRX = 1.6◦ = 0.0279 rad, the opti-
mal λ is given by λ = log(2)/(πh2φ2

RX) ≈ 7 · 10−3/km2—this corresponds to
7 · 10−3 · 4πR2

⊕ ≈ 3.6× 106 UEs on the Earth surface and a similar number
of satellites in the constellation—which is literally a mega constellation.
However, because the UEs are not likely to be homogeneously distributed
on the Earth, the system model presented should not be interpreted globally,
but rather to give a local optimal density of the co-channel transmitters and
satellites.

Figure 3.12. The bandwidth-normalized throughput at the LEO BS with various
noise magnitudes NSRo ∈ {5, 1, 1/5, 0} = {7, 0,−7,−∞} dB and
κ ∈ (0, 15). In the presence of noise, κ ≈ log(2) maximizes the
throughput.
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4. Temporal analysis of the narrow-beam
LEO

Recall Section 2.7, where fading and antenna attenuation temporal char-
acteristics were formulated and simulated in a spherical model. In this
section, we give a mathematical characterization of these qualities and
quantities based on the planar model. It turns out that the autocorrelation
of the pure LoS channel has a simple Gaussian and exponential form for
the total interference from the entire ensemble of the interferers and for
the interference outside the −3 dB footprint, respectively. We refer to these
as intercell plus intracell total interference and intercell total interference,
respectively. Furthermore, we include the block fading multipath effect as
a triangular AEA autocorrelation and hence a PSD of the form sinc(·)2. In
this section, we characterize a general channel model for the intracell plus
intercell and intracell total interferences. A channel model for the nearest
signal is also proposed in this section. Since the satellites have definite
orbital speeds, the channel properties exhaustively depend on the altitude
and the carrier frequency. In this sense, the temporal interference model
and nearest transmitter channel responses are well-defined.
The total interference exhibits considerable power variation as the satel-

lite advances and the interferers move inside the footprint. This attenuation
component is noncorrelated to the fading spread component, and thus, at
least theoretically, separable in the frequency spectrum to improve the SIR.
Especially for high carrier frequencies, by merely observing the frequency-
spectrum plot, we can perform an interference cancellation by suppressing
the slow attenuation frequency components from the total interference,
while preserving the shape of the spectrum of the nearest transmitter, i.e.,
the desired signal (or multiple signals as would be the case if there are
handovers).
The studied signal is a baseband signal ideally downconverted from the

carrier. The theoretical model relies heavily on Theorem 3.3.6. Furthermore,
Theorem 3.4.4 guarantees that the interference waveform is a stationary
Gaussian process. The temporal properties of this Gaussian process, which
is stationary by definition, are determined by the autocorrelation functions
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proposed in this section. 1

The simulation codes based on the planar model are at the end of the
section. The planar model is highly accurate for narrow-beamed LEO BS,
such as φRX = 1.6◦ (see Publication III).
The spread of frequencies in the channel depends on the bandwidth

and can be divided into three qualitative categories of signal attenuation,
depending on the carrier frequency.

1. High carrier frequency: The multipath fading amplitude correlation
time is shorter vis-à-vis the antenna attenuation time: τc < τa.

2. Mediocre carrier frequency. The multipath fading amplitude correla-
tion time is similar vis-à-vis the antenna attenuation time: τc ≈ τa.

3. Small carrier frequency. The multipath fading amplitude correlation
time is longer vis-à-vis the antenna attenuation time: τc > τa.

The scenarios (1) and (3) will be explored in the section. The studied carrier
frequencies are fc ∈ {2.5, 1} and fc = 10 kHz GHz for the respective
scenarios.
Recall the definition of the AWN total interference (3.31)

I = I(t) =
∑︂

x∈G1(t)

yx(t)hx(t)x, (4.1)

where, for this section, y = y(t) is the typical i.i.d. ergodic WN signal,
g = g(t) is the typical i.i.d. fast fading variable, and {x}x∈G are amplitude
gains.

Definition 4.0.1 (Average envelope amplitude (AEA)). We will refer to the
average envelope amplitude (AEA), which reflects the moving average (MA)
over a use-period epoch of the received interference waveform envelope,
defined by

IAEA(t) ≜
1√︁

1 + 4κ̃E(h)2
∑︂

x∈G1(t)

hx(t)x, (4.2)

where 1/
√︁
1 + 4κ̃E(h)2 is a scaling constant, which derives from Theorem

3.3.6, conditioning that the aggregate power
∑︁

(hxx)
2 = κ̃ equals the AEA

power E(I2AEA) = var(IAEA) + E(IAEA)2 = κ̃, as it should be. Furthermore,
we denote by

IAEA1 and IAEA2

1As throughout the thesis, the total interference can stem from any signals, not
just network terminals. For example, the interference may be from natural sources
(for which the Poisson location modeling is highly feasible, since the natural
phenomena are often mutually non-correlated). Furthermore, the analysis applies
directly to multiple tiers of interferers. However, in scenarios where there are
other interference tiers that the “nearest transmitter” (or the served transmitter)
does not belong to, and there can be interferers closer than the served transmitter,
the Lomax distribution model may not be feasible. In this case, a modified analysis
might be appropriate for the SIR analysis.
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the total interference from the entire ensemble of transmitters (essen-
tially, the main lobe footprint) and the total interference outside the −3 dB
footprint, respectively. Assuming a cell size of a −3 dB footprint, we will
refer to IAEA1 − IAEA2 and IAEA2 as intracell and intercell total interference,
respectively.

The magnitude of the AEA depends on the presence of transmitting ter-
minals and their signal characteristics, the relative terminal locations with
respect to the antenna beam, and signal attenuation, including fading and
phase shifts. The AEA is multiplicative, since it represents the varying
signal envelope synthesized from the AWN total interference by a moving
average. It can be multiplied by an AWN signal in the time domain and
convoluted in the frequency domain with the AWN signal PSD (even of a
single tone) to characterize the random signal response in the narrow-beam
LEO fading channel.
AEA1 does not consider any prior interference cancellation. On the con-

trary, the AEA2 models the scenarios where intracell interference is miti-
gated, e.g., using frequency allocation for the transmitters in the served
beam [2]. In this section, we will study interference PSD in the two cases,
and also present an interference cancellation technique that applies to both
scenarios. We propose a scheme in which a partial interference cancella-
tion of the main lobe interference can be feasible at the signal processing
stage without any prior mitigation, based on the distinguishable frequency
content.

4.1 Correlation functions

We follow the standard definitions of the autocorrelation and the autocovari-
ance functions. For a stationary and ergodic signal y(t), they are defined
for the time lag τ ∈ R as

Cy(τ) ≜ E(y(t)y(t+ τ)), (4.3)

Ky(τ) ≜ E(y(t)y(t+ τ))− E(y)2, (4.4)

respectively. By definition, Cy(0) = E(y2) and Ky(0) = var(y).

Proposition 4.1.1. (Autocovariance of the AEA) Let h = h(t) be a power-
normalized amplitude block fading gain; also, assume normalized transmis-
sion powers. The autocovariance function of the total interference from
the main lobe footprint, i.e., the intercell plus intracell total interference,
is a Gaussian function KAEA1-LoS(τ) (the antenna attenuation component 2)

2We use the abbreviation “LoS” here; however, the Gaussian antenna attenuation
component is also present in the Rayleigh fading channel. Without fading, this
component is the only present.
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combined with the triangular function KAEA1-MP(τ) (the multipath fading
component):

KAEA1(τ) ≜ KAEA1-LoS(τ) +KAEA1-MP(τ)

=
κ̃

1 + 4κ̃E(h)2
(︁
(1− var(h)) exp{−Dh,ϵ(vsatτ)

2/4}+ var(h)triang(τ/τc)
)︁
,

(4.5)

where vsat is the orbital speed of the satellite, Dh,ϵ,φRX = sin4(ϵ)/(h2φ2
RX).

The total interference outside the −3 dB footprint, i.e., the intercell
interference, is given by the exponential antenna attenuation component
combined with the triangular multipath component

KAEA2(τ) ≜ KAEA2-LoS(τ) +KAEA2-MP(τ)

κ̃

2(1 + 4κ̃E(h)2)
(︁
(1− var(h)) exp{−Dh,ϵvsatτh/50}+ var(h)triang(τ/τc)

)︁
.

(4.6)

Proof. The correlation function consists of the left-hand-side antenna atten-
uation component and the right-hand-side fading attenuation component.
The correlation functions can be estimated with the proposed formulas to
a practical accuracy. In the following, we present an argument in support
of the estimates. The correlation functions are verified experimentally in
Figure 4.1. In the figure, a Rice-1 block fading channel is modeled with en-
velope amplitude correlation times fc ∈ {0.2, 0.1}s (which are the halfwidths
of the little triangles around 0). κ̃ = 2 in both cases. The correlation func-
tion of AEA1 reflects the attenuation rate of the Gaussian antenna, and
is experimentally verified by the Monte Carlo simulations. For the AEA2,
the spectrum is more spread, which leads to the exponential form of the
covariance function.
Let us denote cκ̃ ≜ κ̃/(1 + 4E(h)2κ̃) for the proof. Because the two sum

components are well-defined and converge independently, we can use the
following decomposition into the two uncorrelated (although not indepen-
dent) components:

IAEA(t) =
∑︂

x∈G1(t)

hx(t)x =
∑︂

x∈G1(t)

x(hx(t)− E(h))

⏞ ⏟⏟ ⏞
≜IAEA-MP(t)

+E(h)
∑︂

x∈G1(t)

x

⏞ ⏟⏟ ⏞
≜IAEA-LoS(t)

. (4.7)

According to (3.32) and (3.33), the process IAEA-MP has a zero mean with
the varianceKAEA-MP(0) = var(IAEA-MP) = κ̃E((hx−E(hx))2)/(1+4E(g)2κ̃) =
cκ̃var(hx) (we work with the amplitude, hence, we multiply the expression by
the factor of two). Furthermore, in the block fading model, the correlation
function of IAEA-MP is a triangle function determined by coherence length.
We have, KAEA-MP(τ) = cκ̃var(hx)triang(τ/τc). Using the same formulas,
(3.32) and (3.33), for the antenna attenuation component, var(IAEA-LoS) =

124



Temporal analysis of the narrow-beam LEO

E(h)2cκ̃ = (1− var(h))cκ̃ by assuming the normalized-power E(h2) = 1. The
result follows from the additivity: KAEA(τ) = KAEA-MP(τ) +KAEA-LoS(τ).

Note that, regarding AEA2, in the light of (3.25), the interference power
outside the −3 dB footprint is equivalent to scaling the transmission fading
gain h2 by 1/2. Namely, such deterministic power fading is a degenerate
distribution with an atomic probability measure on {1/2}, and the corre-
sponding step function CCDF. Should we incorporate the fading gain into
the density of the GP, this results exactly in the points lying in (0, 1/2). This
results in the variance var(IAEA2) = cκ̃E(h2/2) = cκ̃/2.

We have been exploring the autocovariance functions instead of the auto-
correlation function. Next, we chacarcterize the autocorrelation functions.

Corollary 4.1.2 (Autocorrelation function of the AEA and the AWN total
interference). Given a signal y = y(t) with the autocorrelation function
Cy(·), the autocorrelation function of the signal multiplied by the AEA in
the intercell plus intracell interference-limited channel is

CAEA1(τ)Cy(τ) = (KAEA1(τ) + E(IAEA1)
2)Cy(τ)

=

(︃
KAEA1(τ) +

(2κ̃E(h))2

1 + 4E(h)2κ̃

)︃
Cy(τ). (4.8)

Proof. E(IAEA1)
2 is given straightforwardly by Theorem 3.3.6.

For the intercell interference-limited channel, E(IAEA2)
2 = E(IAEA1)

2/2.

Through the autocorrelation (4.8), we can characterize the total interfer-
ence, given a waveform y, which essentially corresponds to the interference
waveform stripped from the antenna and fading attenuation components (in
a sense, it is an interference waveform before passing through the channel).
Recall that by Theorem 3.4.4, the AWN total interference is a Gaussian pro-
cess. It is determined by the second-order statistics and the autocorrelation
of the AEA, multiplied by the autocorrelation of a (bandwidth-limited) WN
signal (the sinc function).

Example 4.1.1 (AWN total interference as a Gaussian process). For the
bandwidth B, using Theorem 3.4.4 and the autocovariance (4.5), the main
lobe AWN total interference is a stationary Gaussian process with the
autocorrelation function

CI(τ) =
κ̃

1 + 4E(h)2κ̃
(︁
(1− var(h)) exp{−Dh,ϵ(vsatτ)

2/4}

+ var(h)triang(τ/τc) + 4E(h)2κ̃
)︁
sinc(Bτ). (4.9)

Figures 4.2a and 4.2b show the AEA amplitude and the AWN total interfer-
ence waveform from interfering signals of bandwidth B = 30 Hz (meaning,
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thirty samples per second). Figure 4.2b is a stationary Gaussian process
with the autocorrelation function (4.9). The AWN total interference wave-
form is modulated from the received samples into the analog baseband
waveform. There are, on average, log(2)κ̃ = log(2) interferers inside the −3

dB footprint (the intracell).
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(a) The Gaussian-form estimate of the autocovariance function. Fading envelope
amplitude correlation time τc = 0.2 in Rice-1 channel, corresponding to the
carrier frequency fc ≈ 1 GHz.

(b) The exponential-form estimate of the autocovariance function. Fading envelope
amplitude correlation time τc = 0.1 in Rice-1 channel, corresponding to the
carrier frequency fc ≈ 2.5 GHz.

Figure 4.1. The AEA autocovariance functions. 127
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(a) The average envelope amplitude in the Rice-1 channel. The fading coherence
time τc = 0.1 corresponds to the carrier frequency fc ≈ 2.5 GHz.

(b) A baseband AWN total interference waveform in the Rice-1 channel. Interfering
signals are Gaussian with a bandwidth B = 30 Hz.

Figure 4.2. The intracell plus intercell total interference AEA and a corresponding
AWNwaveform, which is a Gaussian process. The GP parameter κ̃ = 1.
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4.2 Power spectral density

The frequency response of an interference bandwidth is characterized
through the PSD. According to Wiener-Khinching theorem, the power
spectral density (PSD) of a signal is the Fourier transform of its auto-
correlation function. It is given as the Fourier transform FCAEA(·) of the
autocorrelation function of the AEA. The channel response of the typical
interfering signal y can be derived accordingly to (4.8) by convolving in the
frequency domain with the Fourier transform of Cy(·).

Corollary 4.2.1 (PSD of the AEA). The PSD of the intracell plus inter-
cell AWN total interference is controlled by the Fourier transform of the
autocorrelation function derived from the autocovariance (4.5), and it is
given for f ∈ R by

SAEA1(f) ≜ FCAEA1
(f) ≜

∫︂ ∞

−∞
CAEA1(t)e

−i2πftdt

=
κ̃

1 + 4E(h)2κ̃
2
√
π(1− var(h)) exp{−4f2π2/(Dh,ϵv

2
sat)}√︂

Dh,ϵv
2
sat⏞ ⏟⏟ ⏞

FKAEA1-LoS
(f)

+
κ̃

1 + 4E(h)2κ̃

(︂
var(h)τcsinc2(fτc)

⏞ ⏟⏟ ⏞
FKAEA1-MP (f)

+4κ̃E(h)2δ(f)
)︂
, (4.10)

where δ(·) is the Dirac Delta function. Similarly, for the intercell total
interference, we have

SAEA2(f) ≜ FCAEA2
(f)

=
κ̃

2(1 + 4E(h)2κ̃)
Dh,ϵ(1− var(h))hvsat

(100π2f2 + D2
h,ϵh

2v2sat/100)⏞ ⏟⏟ ⏞
FKAEA2-LoS

(f)

+
κ̃

2(1 + 4E(h)2κ̃)

(︂
var(h)τcsinc2(fτc)

⏞ ⏟⏟ ⏞
FKAEA2-MP (f)

+4κ̃E(h)2δ(f)
)︂
. (4.11)

Proposition 4.2.2 (Autocorrelation and PSD of the nearest transmitter).
The variance in the nearest transmitter signal strength x1 is negligible, as
can be deduced from the CCDF of the GP void probability (3.36)); var(x1) =
E(x21)− E(x1)2 = κ̃/(κ̃+ 1)− (2κ̃/(2κ̃+ 1))2 < 10−1 for all κ̃ > 0. Hence, for
simplicity, we neglect the antenna attenuation fluctuation and model the
signal strength of the nearest transmitter gain in the LoS channel with a
constant autocorrelation function. This approximation is feasible for large
κ̃; say, κ̃ ≥ 2 (when the nearest transmitter is likely to be reasonably close
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to the boresight). The multipath component of the AEA of the nearest
transmitter is a triangular function corresponding to the block fading. The
combined autocorrelation is

Cx1(τ) ≜
(︃

κ̃

1 + κ̃
− var(g)

)︃

⏞ ⏟⏟ ⏞
≈E(x1g)2

+ var(g)⏞ ⏟⏟ ⏞
≈var(x1g)

triang(τ/τc), (4.12)

where the expected power

Cx1(0) = E(x21g2) = E(x21) =
∫︂ 1

0
(1− xκ̃)dx = κ̃/(1 + κ̃)

is the expected power of the nearest transmitter derived from (3.36). The
PSD of the nearest transmitter signals is

Sx1(f) ≜ FCx1
(f) =

(︃
κ̃

1 + κ̃
− var(g)

)︃
δ(f) + var(g)τcsinc2(fτc). (4.13)

The antenna attenuation fluctuation component of the total interference
and the spectral spread due to fading can be exploited to mitigate the
interference and improve the SIR. We demonstrate this for the nearest
transmitter signals. Indeed, in plural, signals: depending on the length
of the observation period, the nearest transmitter can change (we do not
further address the handover implementation) as the typical LEO BS moves.
The typical LEO BS receives the total interference within which the nearest
transmitter signals are embedded, whether consisting of single or multiple
transmissions. The goal of this section is to recognize and mitigate the
frequency components from the total interference that definitely do not
belong to the nearest transmitter signals. Finally, we study the interference
cancellation effect on the average SIR.

4.3 Interference cancellation: Filtering the reducible frequencies

4.3.1 Exploiting the multipath fast-fading: Average SIR in the spread
spectrum

In this section, we study how highpass filtering the non-spread frequencies
(in the baseband) affects the SIR.
For the sake of analytical rigor, let us consider that the “nearest” trans-

mitter belongs to a distinct (independent) GP GNT (whose average distance
from the origin is controlled by κ̃), whereas the interferers belong to G.
Define the total received signal as the sum of the nearest transmitter signal
and the total interference (“total interference” from the tier G):

Z(t) = I(t) + yNT(t)gx1(t)x1(t), (4.14)
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where yNT(·) is aWN signal. Define the average-signal-to-average-interference
ratio as

ASIR ≜ E((yNTgx1x1)2)
E(Z2)− E((yNTgx1x1)2)

=
E(x21)
E(I2)

. (4.15)

The ASIR without any interference cancellation in the intracell plus intercell
and intercell interference-limited channels are

ASIR1 ≜
Cx1(0)

CIAEA1
(0)

=
κ̃/(κ̃+ 1)

κ̃
=

1

1 + κ̃
, (4.16)

ASIR2 ≜ 2ASIR1 =
2

1 + κ̃
, (4.17)

respectively.
Recall Proposition 4.1.1. Since the power in the non-spread frequen-

cies (i.e., non-zero frequencies of the AEA) is given by the autocovariance
functions, the ASIRs in the spread spectrum are

CASIRSS
1 ≜ Kx1(0)

KAEA1(0)
=

var(g)
κ̃/(1 + 4κ̃E(g)2)

,

CASIRSS
2 ≜ Kx1(0)

KAEA2(0)
=

var(g)
κ̃/(2(1 + 4κ̃E(g)2))

, (4.18)

respectively. One can take the limit κ̃ → ∞ and see that

CASIRSS
1 ≥ 4E(g)2var(g),

CASIRSS
2 ≥ 8E(g)2var(g). (4.19)

For Rayleigh fading (var(g) = 1− π/4,E(g) =
√
π/2),

CASIRSS
1 ≥ (1− π/4)π ≈ 0.67 ≈ −1.7 dB,

CASIRSS
2 ≥ 2(1− π/4)π ≈ 1.35 ≈ 1.3 dB. (4.20)

for all κ̃: In the multipath fast-fading channel, in the spread spectrum, the
density of interferers can grow arbitrarily; however, the expected SIR has a
strictly positive lower bound (meaning that the spread signal energy has a
finite upper bound). Especially in the intercell interference-limited channel,
the SIR is considerably good. The theoretical efficiency of this method
depends on the severity of the fading: In a severely faded served transmitter
channel state, significant improvement in the SIR can be achieved as long
as the encoding and decoding are capable of conveying information in the
spread frequencies.

4.3.2 Filtering the spread frequencies

In this section, we study how lowpass filtering the spread frequencies affects
the SIR. We study the AEA of the total received signal

ZAEA1(t) ≜ (IAEA1 + gx1x1)(t)A, (4.21)
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where the amplitude gain x1 and IAEA are independent (the nearest trans-
mitter belongs to a separate PPP). The scaling constant

A = A(κ̃, g) ≜
√︄

E(I2AEA) + E(x21)
E(I2AEA) + E(x21) + 2E(IAEA)E(gx1)

(4.22)

is chosen so that the power E(Z2
AEA) = E(I2AEA) + E(x21), as it should be. For

the intracell plus intercell interference-limited channel (IAEA = IAEA1),

A1 ≜
√︄

κ̃+ κ̃/(κ̃+ 1)

κ̃+ κ̃/(κ̃+ 1) + 4κ̃E(g)
√︁

κ̃/(κ̃+ 1)− var(g)/
√︁
1 + 4κ̃E(g)2

, (4.23)

and for the intercell interference-limited channel (IAEA = IAEA2),

A2 ≜
√︄

κ̃/2 + κ̃/(κ̃+ 1)

κ̃/2 + κ̃/(κ̃+ 1) + 2
√
2κ̃E(g)

√︁
κ̃/(κ̃+ 1)− var(g)/

√︁
1 + 4κ̃E(g)2

.

(4.24)
From the standard identities for the correlation function of the sum of two
independent random variables, the autocorrelation of ZAEA is

CZAEA(τ) = KAEA(τ)A
2 +Kx1(τ)A

2 + E(ZAEA)
2

= (KAEA-LoS(τ) +KAEA-MP(τ) + var(g)triang(τ/τc))A2 + E(ZAEA)
2.

(4.25)

Accordingly, the PSD of the total received signal AEA in the intercell plus
intracell interference-limited channel is

SZAEA1
(f) =

κ̃

1 + 4E(h)2κ̃
2
√
π(1− var(h)) exp{−4f2π2/(Dh,ϵv

2
sat)}√︂

Dh,ϵv
2
sat⏞ ⏟⏟ ⏞

FKAEA1-MP (f)

A2
1

+

(︃
κ̃

1 + 4E(h)2κ̃
+ 1

)︃
var(h)τcsinc2(fτc)

⏞ ⏟⏟ ⏞
FKAEA1-LoS

(f)+FKx1
(f)

A2
1

+

(︄
2κ̃E(g)√︁

1 + 4κ̃E(g)2
+

√︃
κ̃

1 + κ̃
− var(g)

)︄2

A2
1

⏞ ⏟⏟ ⏞
E(ZAEA1 )

2

δ(f), (4.26)

and similarly, in the intercell interference-limited channel,

SZAEA2
(f) =

κ̃

2(1 + 4E(h)2κ̃)
Dh,ϵ(1− var(h))hvsat

(100π2f2 + D2
h,ϵh

2v2sat/100)⏞ ⏟⏟ ⏞
FKAEA2-LoS

(f)

A2
2

+

(︃
κ̃

2(1 + 4E(h)2κ̃)
+ 1

)︃
var(h)τcsinc2(fτc)

⏞ ⏟⏟ ⏞
FKAEA2-MP (f)+FKx1

(f)

A2
2
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+

(︄ √
2κ̃E(g)√︁

1 + 4κ̃E(g)2
+

√︃
κ̃

1 + κ̃
− var(g)

)︄2

A2
2

⏞ ⏟⏟ ⏞
E(ZAEA2 )

2

δ(f). (4.27)

The total interference and the nearest transmitter powers in the spread
spectrum are

∫︂ ∞

−∞
FKAEA-LoS(f)df = KAEA-LoS(0)A

2,

∫︂ ∞

−∞
FKx1

(f)df = Kx1(0)A
2,

respectively. In the non-spread spectrum, the respective powers are given
by subtracting the spread power from the total power in the entire spectrum.
Imagine a scenario with all spread frequencies lowpass filtered from the

received signal, and only the non-spread frequencies are preserved (i.e., the
signal power is the mass of the Dirac delta function at f = 0 in the PSD of
the AEA). Analogous to the definition (4.15), the power for the non-spread
frequencies for the intercell plus intracell and intercell interference-limited
channels are

CASIRNSS
1 ≜ E(x21)−Kx1(0)A

2
1

E(ZAEA1)
2 −

(︁
E(x21)−Kx1(0)A

2
1

)︁ (4.28)

=
κ̃/(1 + κ̃)− var(g)A2

1(︃
2κ̃E(g)√
1+4E(g)2κ̃

+
√︁
κ̃/(1 + κ̃)− var(g)

)︃2

A2
1 − (κ̃/(1 + κ̃)− var(g)A2

1)

,

CASIRNSS
2 ≜ E(x21)−Kx1(0)A

2
2

E(ZAEA2)
2 −

(︁
E(x21)−Kx1(0)A

2
2

)︁ (4.29)

=
κ̃/(1 + κ̃)− var(g)A2

2(︃ √
2κ̃E(g)√

1+4E(g)2κ̃
+
√︁
κ̃/(1 + κ̃)− var(g)

)︃2

A2
2 − (κ̃/(1 + κ̃)− var(g)A2

2)

,

(4.30)

respectively. Comparing these to (4.16) and (4.17), an pessimistc improve-
ment in the SIR in both cases is

CASIRNSS

ASIR
κ̃→∞
= 1− var(g). (4.31)

This reflects the property that filtering the spread frequencies can be
detrimental in the fading channel (var(g) > 0). In the pure LoS channel,
CASIRNSS/ASIR > 0 dB for all κ̃, since a fraction of the interference fre-
quencies are also spread in the LoS channel due to the antenna attenuation.
Furthermore, filtering the spread frequencies can make the link more

stable and improve the user fairness (recall the discussion in Section 3.7).
However, as observed, in the fading channel, this can deteriorate the aver-
age SIR.
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4.3.3 Frequency domain interference cancellation of the antenna
attenuation components

The total received signal spectrum consists of three distinct parts: the
antenna attenuation part FKAEA-LoS(·), the triangular multipath scattering
part, and the delta function at f = 0 (non-spread frequencies). While the
latter two are common for the nearest transmitter signal and the total
interference, the nearest transmitter signal does not contain the antenna
attenuation component, which is clearly separable in the spectrum plot for
sufficiently high carrier frequencies. In the time domain, this component
can be seen as multiplicative noise to a total interference waveform (which
is Gaussian for large densities of interferers or if each interfering signal
is Gaussian; c.f. Figures 3.6a-3.6d), corresponding to IAEA-LoS, which is un-
correlated with the multipath fading AEA component IAEA-MP. Even though
lacking prior information about the channel state or density of interferers,
FKAEA-LoS(·) can be recognized and mitigated in the frequency domain; conse-
quently, the remaining spectrum resembles the desired nearest transmitter
signal, being ideally a scaled version of it. Since the reducible frequency
content is eliminated, the ASIR improves. Furthermore, and perhaps more
importantly, the variance is reduced, and the instantaneous SIR becomes
more stable.
Consider that we are perfectly capable of filtering the antenna attenua-

tion component from the frequency spectrum. Recall that the power and
the variance of a total interference waveform AEA are E(I2AEA1

) = κ̃ and
E(I2AEA2

) = κ̃/2. After removing the antenna attenuation components, an
upper bound for the power and variance reduction is

KAEA1-LoS(0)A
2
1 =

κ̃(1− var(g))
1 + 4E(g)2κ̃

A1(κ̃)
2
κ̃→∞
≤ 1− var(g)

4E(g)2
=

1

4
, (4.32)

KAEA2-LoS(0)A
2
2 =

κ̃(1− var(g))
2(1 + 4E(g)2κ̃)

A2(κ̃)
2
κ̃→∞
≤ 1− var(g)

8E(g)2
=

1

8
. (4.33)

The relative improvement in the average SIR will deteriorate for large
densities of interferers: Even though the aggregate energy would increase
unboundedly, only a bounded amount is transferred into the antenna attenu-
ation components. However, for small densities of interferers, the reduction
of the variance can lead to a considerably more consistent user experience
of the link quality (c.f., the discussion in Section 3.7).
Define the ASIR with the SAEA-LoS(·) canceled as

CASIRAA ≜ E(x21)∫︁∞
−∞(SZAEA(f)− SZAEA-LoS(f))df − E(x21)

=
E(x21)

CZAEA(0)−KAEA-LoS(0)A2 − E(x21)

=
κ̃/(κ̃+ 1)

(KAEA-MP(0) + var(g))A2 + E(ZAEA)2 − κ̃/(κ̃+ 1)
. (4.34)
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Denote by CASIRAA
1 and CASIRAA

2 the canceled SIR in the intracell plus
intercell and the intercell interference-limited channels, respectively. The
respective A1, E(ZAEA1)

2, A2 and E(ZAEA2)
2 are presented in (4.23)-(4.27).

Figure 4.3 demonstrates the PSD of the total received signal AEA and
the corresponding PSD with the antenna attenuation components canceled.
Figure 4.4 depicts a nearest transmitter signal and total interference wave-
forms.

Interference cancellation numerical results
Tables 4.1 and 4.2 compare the ASIRs with and without interference can-
cellation for various fading channel states K ∈ {1, 10, 100} in the intercell
plus intracell and intercell interference-limited channels. In CASIRAA and
CASIRNSS, the improvements are modest. Hence, their application is more
substantial in reducing the variance in the SIR, and thus improving the
stability of the link and user fairness. However, fading does not affect
the efficiency of CASIRAA; hence, it is robust against the channel state in
contrast to merely filtering the high frequencies, which can be detrimental
to the SIR, as noted in Section 4.3.2. In the case of a severe fading (of the
nearest transmitter), CASIRSS allows for a significant improvement in the
average SIR for K = 1. Most notably, in the intercell interference-limited
channel, the SIR is improved from −7.4 to 0.8 dB for the GP parameter
κ̃ = 10, which corresponds to, on average, κ = log(2)10 ≈ 7 interferers in a
−3 dB footprint-sized area.
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(a) Small carrier frequency, which results in a long fading coherence time (τc ≈
25s): The antenna attenuation mixes into the fading attenuation.

(b) High carrier frequency and hence short fading coherence time (τc ≈ 0.25s):
The antenna attenuation interference component is visibly separable.

Figure 4.3. Parameters κ̃ = 2 (κ = 2 log(2) transmitters inside the−3 dB footprint
on average), h = 200 km, and fc ∈ {10 kHz, 1 GHz}. Higher altitudes
would narrow the spectrum of the antenna attenuation component.
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e
(a) The interference is “impulsive”, and the instantaneous SIR is low at t ≈ 2.5s.

(b) With the impulsiveness mitigated, the instantaneous SIR is more stable.

Figure 4.4. A total interference baseband waveform of bandwidth B = 40 Hz and
its canceled version. The carrier frequency fc = 1 GHz corresponds to
the fading coherence time τc ≈ 0.25s. The total interference and the
nearest transmitters (that belong to a separate p.p. and are practically
intracell) signals are modulated from Gaussian and BPSK samples,
respectively. The GP parameter κ̃ = 2. 137
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Table 4.1. The ASIRs in the intercell plus intracell interference-limited channel.

Rice-1 fading

κ̃ ASIR1 CASIRSS
1 CASIRNSS

1 CASIRAA
1

2 −4.8 dB −1.7 dB −5.2 dB −4.5 dB

5 −7.8 dB −2.1 dB −8.2 dB −7.7 dB

10 −10.4 dB −2.2 dB −11.0 dB −10.3 dB

Rice-10 fading

κ̃ ASIR1 CASIRSS
1 CASIRNSS

1 CASIRAA
1

2 −4.8 dB −7.2 dB −4.6 dB −4.5 dB

5 −7.8 dB −7.5 dB −7.8 dB −7.7 dB

10 −10.4 dB −7.6 dB −10.5 dB −10.3 dB

Rice-100 fading

κ̃ ASIR1 CASIRSS
1 CASIRNSS

1 CASIRAA
1

2 −4.8 dB −16.6 dB −4.5 dB −4.5 dB

5 −7.8 dB −16.9 dB −7.6 dB −7.7 dB

10 −10.4 dB −17.0 dB −10.4 dB −10.3 dB

Table 4.2. The ASIRs in the intercell interference-limited channel.

Rice-1 fading

κ̃ ASIR2 CASIRSS
2 CASIRNSS

2 CASIRAA
2

2 −1.8 dB 1.3 dB −2.1 dB −1.5 dB

5 −4.8 dB 0.9 dB −5.2 dB −4.7 dB

10 −7.4 dB 0.8 dB −7.9 dB −7.3 dB

Rice-10 fading

κ̃ ASIR2 CASIRSS
2 CASIRNSS

2 CASIRAA
2

2 −1.8 dB −4.2 dB −1.6 dB −1.5 dB

5 −4.8 dB −4.5 dB −4.8 dB −4.7 dB

10 −7.4 dB −4.6 dB −7.5 dB −7.3 dB

Rice-100 fading

κ̃ ASIR2 CASIRSS
2 CASIRNSS

2 CASIRAA
2

2 −1.8 dB −13.5 dB −1.5 dB −1.5 dB

5 −4.8 dB −13.8 dB −4.7 dB −4.7 dB

10 −7.4 dB −14.0 dB −7.4 dB −7.3 dB
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function [AEAsLOS AEAsRICE AWNtotalsLOS AWNtotalsRICE] ...

= plotautocovarianceandAWNandAEA()

## Simulate and plot the total interference average envelope amplitude

## (AEA) and the corresponding interference waveform. Requires the

## Octave signal processing and statistics packages:

## https://packages.octave.org

## Output:

## AEAsLOS: A vector of the AEA in the LoS channel

## AEAsRICE: A vector of the AEA in the Rician channel

## AWNtotalsLOS: A vector of the interference waveform in the LoS channel

## AWNtotalsRICE: A vector of the waveform in the Rician channel

## tkappa (tildekappa) implicitly encompasses the terrestrial

## interferer density, LEO BS altitude, beamwidth, and elevation angle.

## kappa = log(2) * tildekappa is the average number of transmitters

## inside the -3 dB power footprint---further information in the thesis

tkappa = 1;

fc = 1 * 10 ^ 6; # Carrier frequency

cohtime = 4 * pi * 10 ^ 5 / (5 * fc); # Coherence time (s) (tau_c)

orbitalspeed = 7.4 * 10 ^ 3; # The LEO BS orbital speed

h = 200 * 10 ^ 3; # The LEO BS altitude

## The constant D_{h, epsilon, varphi} for epsilon = 90 deg and

## varphi = 1.6 degrees

dd = 1 / (h ^ 2 * deg2rad(1.6) ^ 2);

## Limit the number of fading blocks, set to frac1 = 1 for more accurate

## autocovariance estimate

frac1 = 1 / 1;

## The number of fading blocks is defined such that the LEO BS does not

## move outside the rectangular area in planarHPPrefs(.)

scaling = sqrt(10 ^ 5 / dd); # Scales the PPP region [-0.5 0.5] ^ 2

fadingblocksN = ceil(frac1 * (scaling / orbitalspeed) / cohtime);

symbolN = 1; # The symbol sample length

## Number of samples per fading block (must have symbolN as a factor).

## Each transmitter is in the same block (with independent fading gains)

signallength = 10 * symbolN;

K = 1; # The Rice-K fading parameter

## Generate a Rice-K distribution of normalized power

pd = RicianDistribution(sqrt(K / (1 + K)), sqrt(1 / (2 * (1 + K))));

fadingmean = mean(pd); # The mean of the amplitude fading gain

fadingvar = var(pd); # The variance of the amplitude fading gain

tic
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## Simulate the signals

[AEAsLOS AEAsRICE AWNtotalsLOS AWNtotalsRICE] = ...

condAWN(tkappa, fadingblocksN, frac1 / fadingblocksN, ...

signallength, symbolN, K, fadingmean);

toc

## Scale the envelopes appropriately

AEAsLOS = AEAsLOS / sqrt( 1 + 4 * tkappa * 1 ^ 2 );

AEAsRICE = AEAsRICE / sqrt( 1 + 4 * tkappa * fadingmean ^ 2);

## Numerically estimate the AEA autocovariance functions

maxlag = 10 * sqrt((log(2) / (2 * dd))); # Maximum lag

[autocovarianceLoS, lag] = ... # The AEA autocovariance in LoS channel

xcov(AEAsLOS, [ceil((maxlag / orbitalspeed) ...

* signallength / cohtime)], "unbiased");

[autocovarianceRICE, lag] = ... # The AEA autocovariance in Rice channel

xcov(AEAsRICE, [ceil((maxlag / orbitalspeed) ...

* signallength / cohtime)], "unbiased");

## Modulate the samples into an analog signal

frac2 = 1 / 10; # Limit the length of the modulated signal

T = 0 : 0.01 : frac2 * fadingblocksN * signallength;

xbRICE = digitaltoanalog(T, AWNtotalsRICE(1:frac2 * fadingblocksN ...

* signallength)’);

xbLOS = digitaltoanalog(T, AWNtotalsLOS(1:frac2 * fadingblocksN ...

* signallength)’);

T1 = linspace(0, fadingblocksN * cohtime, length(AEAsLOS));

T2 = linspace(0, frac2 * fadingblocksN * cohtime, length(T));

figure;

hold on;

## Plot the Rice channel AEA

plot(T1, AEAsRICE’, ’linewidth’, 3);

## Plot the LoS channel AEA

plot(T1, AEAsLOS’, ’linewidth’, 3);

title(’Intracell plus intercell interference AEA’,...

’fontname’, ’DejaVu Serif’);

legend("Rice-1 channel AEA_1", ...

"LoS channel channel AEA_1",...

’fontname’, ’DejaVu Serif’);

xlabel("time (s)", ’fontname’, ’DejaVu Serif’);

ylabel("Average envelope amplitude (non-dimensional)",...

’fontname’, ’DejaVu Serif’);

set(gca, ’fontsize’, 8);

grid on;
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hold off;

figure;

## plot(T2,xbLOS, ’linewidth’,2)

hold on;

## Plot the analog Rician response waveform

plot(T2, xbRICE, ’linewidth’, 2)

title(’Intracell plus intercell interference’,...

’fontname’, ’DejaVu Serif’);

legend(’AWN total interference waveform’,...

’fontname’,’DejaVu Serif’)

xlabel(’time (s)’, ’fontname’, ’DejaVu Serif’);

ylabel("Amplitude (non-dimensional)",...

’fontname’, ’DejaVu Serif’);

set(gca, ’fontsize’, 8);

grid on;

hold off;

## Plot the theoretical and simulated autocovariance functions

## for the Rice channel

figure;

hold on;

scaledtimelags = lag ./ max(lag) * (maxlag / orbitalspeed);

actualcohtime = cohtime;

plot(scaledtimelags, autocovarianceRICE, ’-s’, ’linewidth’,3);

## plot(scaledtimelags, autocovarianceLoS, ’-s’,’linewidth’,3);

axis([-maxlag / orbitalspeed maxlag / orbitalspeed 0 0.3]);

x = linspace(-maxlag / orbitalspeed, maxlag / orbitalspeed, 10000);

## The theoretical autocorrelation function

y1 = (1 - fadingvar) * tkappa ... # The LoS covariance component

* exp(-dd * (orbitalspeed * x) .^ 2 / 4) ...

/ ( 1 + 4 * tkappa * fadingmean ^ 2 );

## Define the triangular fading autocovariance function

triangr = tkappa * fadingvar * (actualcohtime - x(find(x > 0))) ...

/ actualcohtime .* (abs(x(find(x > 0))) < actualcohtime) ...

/ ( 1 + 4 * tkappa * fadingmean ^ 2 );

## Alternatively, plot the autocovariance of the intercell interference

## The footprint restriction of the interferer domain

## must be set in the function GP(.) for the simulation:

## y1 = (1 - fadingvar) * 1 / 2 * tkappa * ...

## exp(-dd * (orbitalspeed * abs(x)) * 1 / 50 * h) ...

## / ( 1 + 4 * tkappa * fadingmean ^ 2 );

## triangr = 1 / 2 * tkappa * fadingvar ...
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## * (actualcohtime - x(find(x > 0))) / actualcohtime ...

## .* (abs(x(find(x > 0))) < actualcohtime) ...

## / ( 1 + 4 * tkappa * fadingmean ^ 2 );

triangl = flip(triangr);

## Plot the autocovariance function

plot(x(find(x <= 0)), (triangl ... # Plot the left side of the triangle

+ y1(find(x <= 0))), ’linewidth’, 3, ’color’, ’b’);

plot(x(find(x > 0)), (triangr ... # Plot the right side of the triangle

+ y1(find(x > 0))), ’linewidth’, 3, ’color’, ’b’);

xlabel(’time lag (s)’, ’fontname’, ’DejaVu Serif’);

string = ’Autocovariance of the intercell interference AEA_2’;

title(string, ’fontname’, ’DejaVu Serif’);

set(gca, ’fontsize’, 8);

legend(’Simulated autocovariance’, ’Theory’, ’fontname’, ’DejaVu Serif’);

grid on;

hold off;

endfunction

function [AEAsLOS AEAsRICE AWNtotalsLOS AWNtotalsRICE] ...

= condAWN(tkappa, fadingblocksN, cohtime, signallength, ...

symbolN, K, fadingmean)

a = 10 ^ 5; # Scaling for the PPP sampling region [-0.505, 0.505] ^ 2

## Initialize the memory for the waveform vector

AWNtotalsLOS = zeros(fadingblocksN, signallength / symbolN);

AWNtotalsRICE = zeros(fadingblocksN, signallength / symbolN);

## Initialize the fading gains for the LoS and Rician channels

AEAsLOS = zeros(fadingblocksN, 1);

AEAsRICE = zeros(fadingblocksN, 1);

refs = planarHPPrefs(tkappa * a / pi); # The Earth transmitter locations

refs = [refs(1, :) - 0.5; refs(2, :) + 0.5];

for iii = 1:fadingblocksN

if(mod(iii, 250) == 0) # Observe the progression

disp([num2str(iii), "/", num2str(fadingblocksN)]);

end

[ithAEAsLOS ithAEAsRICE ithAWNsLOS ithAWNsRice] = ...

nthAEAsandAWNs(iii, refs, cohtime, signallength / symbolN, K, ...

tkappa, fadingmean);

AEAsRICE(iii) = ithAEAsRICE; # Rice AEA

AEAsLOS(iii) = ithAEAsLOS; # LoS AEA

AWNtotalsLOS(iii, 1:signallength / symbolN) = ithAWNsLOS;

AWNtotalsRICE(iii, 1:signallength / symbolN) = ithAWNsRice;

end
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## AEA gains

AEAsLOS = AEAsLOS’(:);

AEAsRICE = AEAsRICE’(:);

AEAsLOS = repmat(AEAsLOS’, signallength, 1)(:);

AEAsRICE = repmat(AEAsRICE’, signallength, 1)(:);

## The aggregate AWN signals in a vector

AWNtotalsLOS = AWNtotalsLOS’(:);

AWNtotalsRICE = AWNtotalsRICE’(:);

## The signals are constant within each symbol, so duplicate the vectors

AWNtotalsLOS = repmat(AWNtotalsLOS’, symbolN, 1)(:);

AWNtotalsRICE = repmat(AWNtotalsRICE’, symbolN, 1)(:);

endfunction

## Modulate the given digital samples to an analog signal

function xb = digitaltoanalog(T, digitalsignal)

xb = zeros(0, length(T));

iii = 1;

for t = T

xb(iii) = ... # Modulated analog signal value at t

sum(digitalsignal .* sinc(t - (0:length(digitalsignal) - 1)));

iii = iii + 1;

end

endfunction

## Locations of the interferers

function refs = planarHPPrefs(density)

yMin = -0.505; yMax = 0.505; # Scaled dimensions of the rectangle

xMin = -0.505; xMax = 0.505;

xDelta = xMax - xMin; yDelta = yMax - yMin; # Rectangle side length

## Number of points in the area is a Poisson variable of the given

## density

numbPoints = poissrnd(density + density * (1.01 * 1.01 - 1));

## Pick points from uniform distribution

x = xDelta * (rand(numbPoints, 1)) + xMin;

## Map referencepoints to geographical coordinates

y = yDelta * (rand(numbPoints, 1)) + yMin;

refs = [x’; y’];

endfunction

## Derive the AEAs and the interference waveforms at nth fading block

function [nthAEAsLOS nthAEAsRICE nthAWNsLOS nthAWNsRICE] ...

= nthAEAsandAWNs(n,refs, cohtime, signallength, K, tkappa, ...

fadingmean)

refs = [refs(1, :) + n * cohtime; refs(2, :)]; # Move refs by n steps
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GPrefs = GP(refs, tkappa, fadingmean); # Interferer locations

## Determine the amplitude fading parameters for normalized power fading

s = sqrt(K / (1 + K)); # Noncentrality parameter

sigma = sqrt(1 / (2 * (1 + K))); # Scale parameter

if s == 0 # Rayleigh fading case

fadings = raylrnd(sigma, 1, length(GPrefs));

else # Else, Rician samples (for some reason, ricernd can not handle s==0)

fadings = ricernd(s, sigma, 1, length(GPrefs));

endif

nthAEAsRICE = sum(sqrt(GPrefs) .* fadings); # Interference AEA

nthAEAsLOS = sum(sqrt(GPrefs));

## Alternatively, return the interference powers:

## nthAEAsRICE = sum(GPrefs .* fadings .^ 2);

## nthAEAsLOS = sum(GPrefs);

## Simulate the AWGN waveform samples in each block

signals = normrnd(0, 1, signallength, length(GPrefs));

## Alternatively, simulate binary white noise samples:

## signals = ...

## discrete_rnd([-1, 1], [0.5,0.5], signallength, length(GPrefs));

nthAWNsRICE = ...

sum((sqrt(GPrefs) .* signals .* fadings)’)’; # Rice-K interference

nthAWNsLOS = sum((sqrt(GPrefs) .* signals)’)’; # The LoS interference

endfunction

## Produces a realization of the GP and sum the signals given refs

function GPrefs = GP(refs, tkappa, fadingmean)

a = 10 ^ 5; # A scaling factor corresponding to refs in [-0.5 0.5] ^ 2

GPrefs = exp(-a * norm(refs, 2, "cols") .^ 2);

## Here put a footprint restriction (for intercell, GPrefs < 0.5)

GPrefs = GPrefs(find(GPrefs > 0));

## ... or take only the nearest transmitter

## (here, the scaling corresponds to the Rice fading):

## GPrefs = [0 max(GPrefs) * (1 + 4 * tkappa * fadingmean ^ 2)];

endfunction
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Abstract—The integration of satellite–terrestrial networks is
beneficial in terms of the increase of the network capacity and
coverage. In such a heterogeneous network, highly efficient spec-
trum utilization is extremely important. This could be achieved
by the single frequency reuse which allows increasing the capacity
at the cost of increased interference. Interference is one of
the main parameters that limits the link-level performance in
such a network. In this paper, we examine the frequency reuse
scenario by analyzing the impact of terrestrial interference to the
uplink of a low Earth orbiting (LEO) satellite constellation in the
high International Mobile Telecommunications (IMT) frequency
bands. To this end, we propose a novel stochastic geometry based
analytical framework that is able to accommodate various aspects
of realistic satellite networks. The accuracy of the analysis is
verified by using advanced simulation tools.

I. INTRODUCTION

The rapid proliferation of smart devices has lead to a
tremendous increase in data traffic worldwide. To address
the challenge of ever-growing network capacity demand, a
combination of terrestrial networks and low Earth orbit (LEO)
mega-constellations is envisioned to provide a high-throughput
low-latency broadband connectivity everywhere [1], [2]. How-
ever, one critical question for the satellite–terrestrial network
coexistence is how the scarce spectrum resources between
the two systems are shared [3]–[5]. Aggressive frequency
re-use maximizes the spectral usage but leads to increased
interference and degradation in the link quality. Accurate
prediction of the interference between the systems is therefore
of great practical importance.

In the literature, the coexistence and spectrum sharing
between the satellite and terrestrial systems has been studied
extensively either through computer simulations or mathemat-
ical analysis [4], [6]–[10]. The problem of simulations is that
they are time-consuming and require specialized software to
be used. A similar problem is also encountered in terrestrial
networks, where it has been solved successfully through
the use of stochastic geometry; see for example [11]–[13]
and references therein for an overview. However, examples
of using stochastic geometry in satellite networks are very
few. In [14], the interference caused by the terrestrial net-

work to downlink transmission of a multibeam satellite on a
geostationary orbit is investigated. The scenario is extended
to a cognitive satellite–terrestrial system where the cellular
network acts as the secondary user by the same authors in [15].
A general expression for a single LEO satellite’s visibility time
is provided in [16], but it is incapable of concluding the general
distribution of visibility periods for any arbitrarily positioned
user. The deterministic model in [16] was then developed by
a statistical analysis of coverage time in mobile LEO during
a satellite visit [17]. Very recently, stochastic geometry was
used to study various aspects of LEO satellite systems with
large constellations in the downlink direction [18], [19].

In this paper, stochastic geometry is applied for the per-
formance analysis of integrated satellite–terrestrial systems
in the uplink (UL) direction. In our model, the interfering
terrestrial transmitters are randomly distributed according to
the Poisson point process. As the distance to the horizon is
limited, a satellite can only experience interference from a
bounded area, which precludes the use of standard stochastic
geometry analysis (as presented, e.g., in [20]), as this often
involves an infinite domain. Given satellite constellation is
modeled with an appropriate point process which will allow us
to perform the theoretical analysis for the LEO constellations.

To the best of our knowledge, this is the first paper that
considers the stochastic geometry based analysis of the UL
scenario in LEO systems. In contrast to prior works, we also
verify the results of stochastic geometry using the industry
standard simulator developed by AGI, namely Systems Tool
Kit (STK) [21]. This leads to realistic measurements via the
accurate physics-based satellite propagation model, path loss
models, etc. provided by the STK. In addition, through STK
simulations we are able to examine the time evolution of the
system as the satellites propagate over the area of interest.

The organization of the remainder of this paper is as
follows. Section II describes the uplink scenario for a LEO
constellation. As for the main results, in Section III, we derive
analytical expressions for coverage probability. Verification of
numerical results is provided in Section IV using STK. Finally,
we conclude the paper in Section V.



II. SYSTEM MODEL

Let us consider an uplink LEO communication satellite
network, as shown in Fig. 1, in which the ground terminals
can transmit data to a satellite if they are located within the
footprint of satellite’s coverage area. The satellite constellation
consists of N satellites, which are placed on No low circular
orbits with the same inclination angle and altitude denoted by ι
and h, respectively. On each orbit, Nq satellites are distributed
uniformly, i.e., N = NoNq.

Ground terminals are located on the surface of Earth which
is approximated as a perfect sphere with radius rE ≈ 6371 km.
The serving ground terminal transmits the data to the nearest
satellite while other terminals within the coverage footprint
of the satellite cause interference. The interfering ground
terminals belong to either the satellite network (SN) or the
terrestrial network (TN). Different power levels are set for
serving and interfering transmitted signals, denoted by p0 and
pn, respectively.

For our analysis, we consider that the ground terminals,
tagged as xn, n = 0, 1, . . . , N−1, are distributed according to
a homogeneous Poisson point process Φ of intensity λgt, i.e.,
xn ∈ Φ. The distances from the transmitters to the satellite and
their corresponding Earth-centered angles are denoted by Rn
and γn, respectively. Throughout this paper, superscript zero
always associates the parameter with the serving transmitter
while other subscripts, n 6= 0, are reserved for interfering
transmitters. As for the propagation model, we consider the
mean power attenuation model given in [22] as well as Rician
fading.

The ground terminals and satellites are equipped with omni-
directional antennas with antenna gains of Ggt and Gsat,
respectively. The satellite-centered angle between the center
of Earth and the ground transmitter, θ, can be obtained from
the basic geometry as

θ(γn) =
π

2
− γn − arcsin

(
cos(γn)(rE + h)− rE

Rn(γn)

)
,

where γn is the Earth-centered angle between the transmitter
and the satellite as depicted in Fig. 1, and

Rn(γn)

=

√
(cos (γn) (rE + h)− rE)

2
+ (sin (γn) (rE + h))

2
. (1)

Thus, path loss is a function of the radial distance γn and
given by [22]

g(γn) =
G(θ(γn))

Rαn(γn)
, (2)

where α is the path loss exponent and G = GsatGgt.
Based on the above modeling, the signal-to-interference

ratio (SIR) at the receiver satellite can be expressed as

SIR =
pv0

g(γ0)

I
=

pv0
g(γ0)∑

xn∈Φ/x0

pvn g(γn)
, (3)

where I is the cumulative interference power from all other
transmitters than the serving transmitter, pv0 and pvn indicate

rE

h

Rn

Fig. 1. Illustration of the considered uplink satellite network. The serving
ground terminal transmits to its nearest satellite, while other ground terminals
consist of satellite ground stations and terrestrial base stations may cause
interference.

the virtual transmitted power from the serving and the interfer-
ing satellites, respectively. Based on our assumption regarding
the Rician fading model, the virtual power is given by

pv0
= p0q + (1− q)p′0, (4)

pvn = pnq + (1− q)p′n, (5)

where p′0 and p′n are exponential with mean p0 and pn,
respectively, and q ∈ [0, 1] represents the portion of line-of-
sight component in the received signal.

Fading conditions of interfering transmitters are considered
to be identically and independently distributed, and spectral
efficiency is calculated by averaging over different channel
realizations. The interference can be seen as Gaussian noise,
and Shannon formula C = log2(1 + SIR) can be used to
measure the link capacity [23].

III. THEORETICAL ANALYSIS

In this section, we provide the theoretical expression for
the probability of coverage to the nearest satellite when the
satellites are assumed to be distributed according to a Poisson
point process with intensity λsat. The value for λsat is chosen
so that it corresponds to the average density of satellites in a
real constellation. This depends on the user location on Earth.

The theory is facilitated by the shot-noise theory of marked
Poisson point processes and we refer to [20] for further
information.



Proposition 1. The uplink probability of coverage when satel-
lites are distributed according to a Poisson point process with
intensity λsat is

pc(T ) = 2πλsat

∫ β

0

∫ ∞

qp0

FI

(
pv0g(γ0)

T

)
e
− pv0

−p0q

p0(1−q)

p0(1− q)
· γ0e

−λsatπγ
2
0dpv0dγ0, (6)

where T is the SIR threshold for a successful transmission
and β refers to radial distance to a satellite at horizon
which can be simply obtained from basic geometry as β =

cos−1
(

rE
rE+h

)
.

Proof. To obtain (6), we start with the definition of coverage
probability:

Eγ0 [P (SIR > T |γ0))]

=

∫ β

0

P (SIR > T |γ0)) fγ0
(γ0)dγ0

(a)
= 2πλsat

∫ β

0

P
(
pv0

g(γ0)

I
≥ T

)
γ0e
−λsatπγ

2
0dγ0

= 2πλsat

∫ β

0

Epv0

[
P
(
I ≤ pv0g(γ0)

T
|pv0 > 0

)]

· γ0e
−λsatπγ

2
0dγ0

(b)
= 2πλsat

∫ β

0

∫ ∞

qp0

FI

(
pv0

g(γ0)

T

)
e
− pv0

−p0q

p0(1−q)

p0(1− q)
· γ0e

−λsatπγ
2
0dpv0

dγ0. (7)

Equation (a) follows from the substitution of the probability
density function of γ0 when satellites are distributed as a
Poisson point process, i.e., fγ0

(γ0) = 2πλsatγ0e
−λsatπγ

2
0 .

Equation (b) is obtained by taking the expectation over
the random variable pv0

. Assuming that p′0 is exponential
with mean p0, the distribution can be simply obtained as

fpv0
(pv0

) = e
−
pv0
−p0q

p0(1−q)
p0(1−q) .

In the case of constant transmitting power, i.e., q = 1, we
have simply

pc(T ) = 2πλsat

∫ β

0

FI

(
p0g(γ0)

T

)
γ0e
−λsatπγ

2
0dγ0. (8)

Proposition 2. The cumulative distribution function FI(t) in
Proposition 1 is given by

FI(t) = 1− 2eat

π

∫ ∞

0

<
{

1− LI(a+ iu)

a+ iu

}
cos(ut)du. (9)

Proof. Proposition (2) is derived using Broomwhich inverse
contour integral and the property of the Laplace transform,
LX(s) := E[e−sX ], which states that the Laplace transform
of the CDF can be obtained from Laplace transform of the

PDF by dividing by s in the frequency domain. Thus, we
have

1− FI(t) =
1

2πi

∫ a+i∞

a−i∞

1− LI(s)
s

estds

=
1

2π

∫ ∞

−∞

1− LI(a+ iu)

a+ iu
e(a+iu)tdu

=
eat

2π

∫ ∞

−∞

1− LI(a+ iu)

a+ iu
(cos(ut) + i sin(ut))du

=
eat

2π

∫ ∞

−∞
<
{

1− LI(a+ iu)

a+ iu

}
cos(ut)

−=
{

1− LI(a+ iu)

a+ iu

}
sin(ut)du

(a)
=

2eat

π

∫ ∞

0

<
{

1− LI(a+ iu)

a+ iu

}
cos(ut)du,

(10)

where <{·} and ={·} denote the real and imaginary parts
of the complex arguments, respectively. Equation (a) follows
from properties of real and imaginary parts in Laplace trans-
form. Namely, for non-negatively supported f̂ :

<{f̂(a+ iu)} cos(ut)−={f̂(a+ iu)} sin(ut)

= 2<{f̂(a+ iu)}. (11)

Proposition 3. Laplace transform of the interference from
Poisson distributed transmitters is given by

LI(s) = exp

{
−2πλgt

∫ β

0

γn
(
1− Lpvn

(sg(γn))
)
dγn

}
,

(12)
where

Lpvn
(s) = Lpnq(s)L(1−q)p′n(s)

= exp (−pnqs) ·
1/pn

1/pn + (1− q)s . (13)

Proof. Poisson point process in a bounded window B :=
B(0, β) ⊂ Rd conditioned on having n points in the window
follows a binomial distribution. Furthermore, having n points
inside the window B is Poisson distributed in Poisson p.p.

P{n points in B} = e−λgtV(B) (λgtV(B))n

n!
, (14)

where V(B) is the Lebesgue volume of B. Let γ1, γ2, . . . , γN
be the distances of the points x1, x2, . . . , xN ∈ Φ from the
origin and pv1 , pv2 , . . . , pvN the transmitting powers of the



respective points. From the definition of Laplace transform,
we have

LI(s) = E[e−sI ] = Epvn ,γn

[
e
−s ∑

xn∈Φ/x0

pvn g(γn)
]

= Epvn ,γn


e−λgtV(B)

∞∑

N=0

(λgtV(B))N

N !
e
−s

N∑
n=1

pvn g(γn)




= e−λgtV(B)
∞∑

N=0

(λgtV(B))N

N !

· Ep1,...,n,γ1,...,n


e
−s

N∑
n=1

pvn g(γn)




= e−λgtV(B)
∞∑

N=0

(λgtV(B))N

N !

· Epv1
,γ1

[
e−spv1

g(γ1)
]
· . . . · EpvN

,γN

[
e−spvN

g(γn)
]

= e−λgtV(B)
∞∑

N=0

(λgtV(B))N

N !

· 2π

V(B)N

(∫ β

0

∫ ∞

0

γe−spvng(γn)F (dpvn)dγn

)N

(a)
= e−

∫ β
0

(1−
∫∞
0
e−spvng(γn)F (dpvn ))λgtdγn ,

where measure F corresponds to the distribution of the power
affected by the fading of the transmitters (virtual power).
Equation (a) stems from series expansion of the exponential
function. Equation (13) follows straightforwardly from the
definition of pvn in (5) and from standard properties of Laplace
transform.

Point-wise values FI(t) in (9) can be numerically calculated
through the Euler methods described in [24]. The following
approximation

FI(t) = 1−
m∑

k=0

(
m
k

)
2−m

eA/2

2t
<
{

1− LI(A/2t)
A/2t

}

+
eA/2

t

n∑

k=1

(−1)k<
{

1− LI(A+2kπi
2t )

A+2kπi
2t

}
(15)

with A = 18.4,m = 11 and n = 15 is suggested here. The
approximation is derived from applying trapezoidal method to
(9) and improving the accuracy by Euler summation.

IV. NUMERICAL RESULTS

The analyzed scenario was implemented in the simulation
environment STK and is depicted in Fig. 2. The system
parameters for the simulations are summarized in Table I. The
satellite altitude was chosen to be 550 km to partly investigate
the performance of emerging very low Earth-orbiting satellite
constellations, such as Starlink [25]. The simulated satellite
constellation consists of 126 satellites, constructed according
to the Walker method [26]. The minimum elevation angle
for the ground terminals was chosen to be 10 degrees to

TABLE I
SYSTEM PARAMETERS

Satellite constellation parameters
Altitude (h) [km] 550
Number of satellite orbits (No) 9
Number of satellites per orbit (Nq) 14
Inclination of the orbits (ι) 90°

Ground terminal parameters
Carrier frequency f [GHz] 26
Power of serving transmitter p0 [dBW] -6
Serving transmitter antenna gain [dB] 37
Serving transmitter antenna model ITU-R S.465
Power of interfering transmitters pn [dBW] varying
Number of interfering terminals 1676
Interference antenna model Isotropic
Satellite antenna model Isotropic
SIR threshold for successful decoding T [dB] 10

Fig. 2. STK scenario representing used satellite constellation, interference
sources, and serving ground terminals. Green circles represent the satellite
footprint.

allow satellite connectivity also in the presence of large
obstacles such as buildings [27]. In the simulated scenario,
1676 interfering terminals were distributed randomly across
the area of interest. The serving ground terminals were placed
inside the area of interest in a way that they were surrounded
by the interference sources. The analysis was performed over
the 12-hour time period from 30 Apr 2020 09:00 to 30 Apr
2020 21:00. As explained in Section II, during this period the
serving ground terminal always connects to the closest satellite
it can find while other terminals act as interference sources.

Fig. 3 depicts the evolution of the signal-to-interference
ratio (SIR) over time in the STK simulations. The spikes
represent connections to new satellites and the blue dots
represent the ongoing connections with a time step of 10
seconds. The closer the satellite is to the serving ground
terminal, the higher the SIR and the better the signal quality
is. The aim of the simulations was to investigate the frequency



Fig. 3. Time evolution of SIR for serving ground terminal for interference
powers pn = −9 dBW and pn = −12 dBW. The blue dots represent
the connection times to a satellite with the time step 10 sec. Line-of-sight
channel was assumed between the serving ground terminal and the satellite.
The threshold (T) for successful decoding is T = 10 dB.

Fig. 4. Spectral efficiency E[log2(1 + SIR)] bit/s/Hz of the satellite uplink.
Values were acquired by the analysis. Approximately mean 1010 interfering
transmitters were assumed to be located inside the satellite footprint. Inter-
fering terminals were assumed to have LoS channel while the serving ground
terminal experienced Rayleigh, Rician (with K factor K = 10) or LoS fading
channels.

reuse performance in the satellite–terrestrial network in a
high IMT frequency band, specifically how much the desired
link from serving terminals is affected by the interference
sources with varying powers. In the considered line-of-sight
(LoS) condition, the SIR drops below the chosen decoding
threshold T = 10 dB multiple times during the considered
time period when the power of interfering transmitters is
pn = −9 dBW. The probability of successful decoding, or
probability of coverage pc(T ), during the entire 12-hour period
was around 0.48 in the scenario considered in Fig. 3, implying
unacceptable quality of the desired link. When the power of
the interfering transmitters was reduced to pn = −12 dBW, the
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Fig. 5. Coverage probability as a function of the power of interfering sources.
Markers depict the STK simulations and the lines correspond to the analytical
results. Interfering terminals were assumed to have LoS channels while the
serving ground terminal experienced Rayleigh or Rician fading (with K factor
K = 10) channels.

SIR was above the threshold during the entire depicted period
and the probability of coverage for the 12-hour simulation
period was pc(T ) ≈ 0.89. According to the simulation results,
the interference power that is lower than −11 dBW provides
desired link quality with coverage probability of at least
pc(T ) = 0.80.

While STK simulations provide accurate results and enable
investigation of the time evolution of the system, they require
specialized software and are computationally complex for the
studied scenario that has multiple simultaneous interfering
transmissions. The simulation execution time on the HP Elite-
Book 840 G5 laptop with the current scenario settings reaches
30 minutes per iteration. The analytical results provided in
Section III, on the other hand, provide a very fast method
for examining the performance of the system with different
parameter values. Fig. 4 represents analytically examined
spectral efficiency of the satellite uplink. In the calculations,
interfering transmitters were assumed to be located inside the
satellite footprint with LoS channel, while the serving ground
terminal experienced Rayleigh, Rician (with K factor K = 10)
or LoS fading channels.

To verify the accuracy of the analysis, Fig. 5 presents the
STK simulation results and the corresponding results from
the analytical framework described in Section III. In the
figure, the STK simulations are depicted with markers and
the lines correspond to the analytical results. In this scenario,
the interfering terminals have LoS to the satellite, while the
serving ground terminal is assumed to experience Rayleigh or
Ricean fading with K factor K = 10.

Since the STK framework used in this paper did not support
direct simulation of fast fading channels, the simulations were
carried out in two phases. First, the long term channel effects
were simulated with STK and exported as text files. Second,



fast fading was added to the long term channel conditions
using Matlab and the final SIR calculations were carried out.
It should also be noted that the simplified Rician fading model
used in the analysis is only an approximation of the true Rician
fading used in the simulations. Herein the parameter q was
selected so that the probability density of the channel powers
had equal first and second moments. This was achieved by
selecting q = 1−

√
1+2K

(K+1)2 .
The simulations and analysis have a good match in all

considered cases when the interference power is low, or the
coverage probability satisfies pc(T ) > 0.85. With Rayleigh
fading in the desired link, the analysis follows the simulations
closely also when the coverage probability is much lower.
The result implies that the analytical framework proposed in
this paper is useful for predicting the performance of real
satellite systems in the region of coverage probabilities that
is of practical interest. Furthermore, the result shows that if
the desired link experiences fading, the interference tolerance
is significantly reduced compared to the LoS case considered
in Fig. 3.

V. CONCLUSION

In this paper, we presented a mathematical framework for
uplink coverage analysis of a terrestrial–satellite network using
stochastic geometry. The satellite network is, first, modeled
with a Poisson point process which was then utilized to
obtain exact expressions for coverage probability in terms
of network parameters. Using Systems Tool Kit simulations,
we verified the correctness of our derivations. The analytical
results provided in this paper can make a huge impact on
the development and design of dense satellite networks. Re-
garding the impact of terrestrial interference to the satellite
uplink, current simulations have shown that without a suitable
configuration the level of the interference to the uplink can
lead to unacceptable performance. Strict power limits for
the transmission in the shared bands or mechanisms such as
licensed shared access are required to limit the number of
simultaneously accessing users in the band.
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Abstract—The Low Earth Orbit (LEO) satellite networks will
improve the quality of future communication networks. The
rapid expansion of LEO networks brings up considerations of
man-made interference from terrestrial networks or other LEO
terminals. Especially the future terrestrial networks will cause
interference in satellite receivers as higher frequency bands will
be utilized in the emerging 5G and beyond networks. We study
the distribution of signal-to-interference ratio (SIR) in a narrow
beam LEO satellite receiver affected by a dense heterogeneous
set of interfering transmitters. We propose that the distribution
of interference power approximates the Gaussian distribution for
the positive values. Furthermore, we suggest that the distribution
of SIR follows the gamma distribution. We use the tools of
stochastic geometry and derive the location, shape, and scale
parameters for the distributions of interference and SIR. The
parameters depend on the amount of interfering transmitters
inside the receiving satellite’s 3 dB footprint, the transmitting
powers, and the slow and fast fading conditions.

I. INTRODUCTION

The emerging Low Earth Orbit (LEO) satellite communica-
tion will play a vital part in the future networks supplementing
the traditional terrestrial networks. The advantages of LEO
networks include low latency and immunity to natural or man-
made calamities. In addition, they can provide reliable and fast
connections to remote parts of the world.

LEO networks work in high frequencies up to mm-waves.
Today such frequencies have been allocated for satellite com-
munications, but in the future, 5G and beyond technologies
utilize these high-frequency bands as well [1], [2], [3]. In
addition, the amount of other terrestrial-satellite terminals
will increase as the future LEO networks will potentially
include thousands or even tens of thousands of satellites. These
facts bring up a question about the interference in a satellite
uplink in the presence of a heterogeneous set of interfering
transmitters.

We will apply the tools from stochastic geometry to study
the interference in a terrestrial-satellite uplink, where the
satellite will experience additive interference power from
multiple overlapping classes of interferers inside its footprint.
We assume that each class of interfering transmitters is Poisson
distributed on the Earth. The interferers experience slow
fading and Rician fast fading conditions. We propose that the

statistical interference power approximates the Gaussian dis-
tribution for the positive values. Furthermore, we propose that
the signal-to-interference ratio (SIR) follows approximately
the gamma distribution. We derive the parameters for the
distributions based on the analysis of ratio distributions and
second-moment matching. The approximation is especially
applicable for high densities of interferers.

A. Related works and motivation

David Middleton’s seminal paper [4] derives closed-form
approximations for a statistical-physical interference wave-
form in three qualitatively different situations characterized
by the interference’s impulsiveness. These distributions are
often referred to as Middleton class A, B, and C distributions.
As a generic source of interference, Poisson point process
(PPP) has been studied, for example, in [5], [6], [7]. In
these papers, the distribution of instantaneous in-phase and
quadrature components is expressed as the alpha-stable distri-
bution [8]. In [9] Gaussian, Middleton class A and alpha-stable
distributions were studied in ad-hoc and cellular networks to
model the interference. Using second-order moment matching
[10] proposes a gamma distribution approximation for the
distribution of interference power in a heterogeneous terrestrial
cellular network – this approximation is possible by assuming
a non-singular path-loss function. In [11], a semi-analytical
expression for the tail probabilities of SIR was obtained.

In these papers, it turns out that modeling interference by
Gaussian statistics often works poorly because the tails of
Gaussian distribution decay fast. However, in satellite commu-
nications, the topology of the Earth facilitates a qualitatively
different setting, and the terrestrial models cannot be used as
such. Contrary to terrestrial networks, the distribution of inter-
ference is not heavy-tailed as the interferers are concentrated
in a small area at a high distance inside the receiver’s footprint,
and the source domain of interference can be considered even
point-like in the case of narrow state-of-the-art beamforming.
Thus, the path-loss function is constant (contrary to a path-
loss function with a singularity), and the expected interference
power is well-defined. The aggregate interference power will
follow the normal distribution with the parameters derived in
this paper.978-1-6654-5975-4/22 © 2022 IEEE



Stochastic geometry has not been used to model satellite
networks until recently. Analysis of interference in a satellite-
terrestrial downlink is provided in [12], whereas [13] studies of
uplink and downlink coverage probabilities in inclined LEOs.
However, contrary to this paper, both [12], and [13] use the
binomial process instead of the Poisson point process. The
work in [14] used the Poisson process to model interfering
transmitters in a terrestrial-satellite uplink evaluating data rates
under Rician fading conditions. However, the analysis relies
on a rather cumbersome numerical inversion of the Laplace
transform. An analysis of data rates in a terrestrial-satellite
uplink applying PPP theory is presented in [15]. None of these
papers gives closed-form expressions for the distribution of
interference or SIR. A survey on possible implementations of
future ultra-dense satellite networks can be found in [16].

B. Our contribution

We apply the PPP analysis to satellite communications and
exploit the fact that the satellite’s main lobe is small with
state-of-the-art beamforming technologies, and the distance to
the satellite can be approximated to be equal to all trans-
mitters inside a footprint. By this assumption, we are able
to characterize the distribution of SIR by the well-known
gamma distribution. First, we derive the Laplace transform of
the interference from multiple classes of interferers assuming
that the interferers are Poisson distributed on Earth’s surface.
Each class of interferers has distinct fading conditions, mean
transmitting powers, density, and antenna pattern. From the
Laplace transform, we conclude that the distribution of the
additive interference can be approximated by Gaussian distri-
bution for positive values with the parameters we derive. Based
on this Gaussian approximation, we derive the distribution of
SIR in the terrestrial-satellite transmission, where a terrestrial
test transmitter transmits from an Earth station to a satellite at
a definite elevation angle and altitude. We validate the approxi-
mation by comparing the gamma distribution approximation to
Monte Carlo simulated distributions with a Gaussian antenna
gain. We will notice that the approximation is very good with
higher densities of transmitters and reasonable with lower
densities.

Analysis in this paper provides insight and a closed-form
distribution that can be used to model the SIR in further studies
of LEO networks.

In the case of dense satellite constellations, the locations of
the satellites can be modeled as a point process, see [12] -
[15]. Hence, the analysis presented in this paper works with
minor modifications in a satellite-terrestrial downlink if the
density of the interfering satellites is high and the receiver’s
antenna pattern is narrow enough.

II. SYSTEM MODEL

We consider an interference-limited terrestrial-satellite up-
link transmission. A test transmitter (TX) is transmitting to a
LEO satellite receiver (RX) with a mean transmitting power
pTX. The receiving satellite is at a definite elevation angle w.r.t.
the test transmitter, and its boresight faces (approximately) the

Glossary of principal symbols
Symbol Explanation

d Distance between the test transmitter and
the satellite

h Altitude of the satellite
Φ(i) Poisson point process of class i

λ
(i)
3dB Mean number of class i interferers inside

the satellite 3 dB footprint
λ
(i)
km Mean number of class i interferers per

square kilometer
λ(i) 3/2 · λ(i)

3dB

P
(i)
I Typical virtual power (power after the fad-

ing gain) of an interfering transmitter in
class i

p
(i)
I Mean power of an interfering transmitter in

class i
K Rician parameter of the test transmitter

K
(i)
I Rician parameter of the interferer class i

L(i) Response function of class i transmitters
I Aggregate interference
µI Mean of the interference
s2I Variance of the interference
pTX Mean power of the test transmitter
νTX LOS component of the test transmitter
σTX Scattered path component of the test trans-

mitter

Fig. 1. System model

test transmitter. The test transmitter boresight steers towards
the satellite. Inside the field of view of the satellite, there
are interfering transmitters. Assuming that the transmitters are
independently distributed on Earth, we assume that they follow
the Poisson point process. That is, the number of interfering
transmitters inside the satellite footprint is Poisson distributed.
We treat the interference from the interfering transmitters as
additive noise, i.e., the transmitted signals are uncorrelated.
We do not consider any interference cancellation techniques.
All interferers radiate omnidirectionally.

A. Poisson Point Process

The interfering transmitters xi ∈ Φ are Poisson distributed
on Earth’s surface E according to the Poisson point process
(PPP) Φ. Vaguely, Φ is a completely independent and iden-
tically distributed random set of points in the manifold E .
Equivalently, if Λ(A) denotes a (deterministic) measure of a



set A ⊂ E , Φ can be defined as a random measure s.t. Φ(A)
is Poisson distributed and EΦ(A) = Λ(A) for all measurable
A.

Distribution of base stations has been shown to follow PPP
in certain cities [17], and PPP can be used in modeling the
user locations in a cellular network uplink [18].

B. Response function

Response function L(·) maps a variable d ∈ Rn to a positive
real number R. In this work, d represents the distance between
the satellite and the test transmitter, and L is a path-loss
function

L(d) = (Ad)−α, (1)

where A ∈ R+, and the path-loss power exponent α ∈ R+.
In other applications, the response function could depend, for
example, also on time.

C. Fading

All transmitters experience Rician fading with Rician pa-
rameter K = ν2/(2σ2), where ν2 is the power in the line-of-
sight (LOS) component and 2σ2 is the power received from
the scattered paths. Consequently, the virtual power seen in the
receiver after the fading is generalized noncentral chi-squared
distributed.

D. Signal-to-interference ratio

We define the signal-to-interference ratio with interfering
transmitters {x(i)

j }Mj=1 in point processes { Φ(i)}Ni=1 as

SIR =
L(d)PTX

I
=

L(d)PTX∑
x
(i)
j ∈∪iΦ(i) P

(i)
j L(i)(dj)

, (2)

where d = d(x0) is the distance from the test transmitter
(at x0) to the satellite, PTX is the virtual power (power after
the fading gain) of the test transmitter. Power P

(i)
j denotes

the virtual power of a transmitter j belonging to the class i,
and L(i)(dj) denotes the path-loss function of the class i at
distance dj .

We assume that all transmitting powers {P (i)
j }Mj=1 in a class

are independent identically distributed (i.i.d.). Often we refer
to a typical power of an interferer of class i as P (i)

I . The mean
power of a typical transmitter is denoted by p

(i)
I .

E. Shadowing

Transmitters are shadowed with probability S. If the original
point process is of density λ, the shadowed transmitters form
a Poisson point process of density S ·λ, and the non-shadowed
transmitters form a PPP of density (1 − S)λ. This rather
intuitive result is a consequence of the thinning theorem of
the PPP [19].

F. Weather model and Doppler shift

We consider that the receiver’s antenna beam is narrow,
and the interferers are essentially very close to each other.
Thus, the weather conditions are approximately equal to all
transmitters including the test transmitter, and cancel each
other in the definition of SIR (2). Similarly, the Doppler shift is
approximately equal to the test transmitter’s Doppler shift and
hence does not have any effect on the aggregate interference
power even after the receivers bandpass filter.

G. Receiver antenna gain

When φRX is the width of the 3 dB beam, we approximate
the receiving antenna gain by a Gaussian beam

GRX(φ) = 2−φ2/φ2
RX for φ ≤ π/2, (3)

where φ denotes the angle w.r.t. the antenna boresight.

III. ANALYSIS

A. Distribution of the interference

The Laplace transform L : C → C of the interference I
from a point process Φ is given by [19], [14]:

LI(z) := E
[
e−Iz

]
= e−

∫
E(1−LPI

(L(d(x))GRX(φ(x))z))Λ(dx),
(4)

where PI denotes the typical virtual power of an interferer.
In the case of a well-steered narrow antenna beam, we can

approximate that all transmitters are at an equal distance d
from the satellite. Then E reduces to a single point x0 of
mass Λ({x0}) := λ and (4) gets the form;

LI(z) = e−λ(1−LPI
(L(d)z)). (5)

In this paper, we define λ := 3/2 · λ3dB , where λ3dB is
the mean number of transmitters inside the satellite’s 3 dB
footprint, and 3/2 is an empirical parameter that compen-
sates the energy from the side lobes – it was obtained by
matching the Monte Carlo simulations to the theory, and it
works for general altitudes and elevation angles. Should the
satellite be in the zenith, the mean number of interferers
can be calculated by the area formula of a spherical cap:
λ3dB = λkm2πR2

⊕(1 − cos(θ)), where θ denotes the central
angle of the 3dB footprint, λkm is the mean number of
transmitters per square kilometer and R⊕ is the radius of
Earth. For lower elevation angles of the satellite, the footprint
is elliptical and the expressions are more complicated. We
leave the geometrical considerations out of the scope of this
paper, and λ3dB will be always given.

We know that the Laplace transform of the non-central chi-
squared distributed faded power variable is given by

LPI
(z) =

e
− ν2

I z

1+2zσ2
I

1 + 2zσ2
I

. (6)

Substituting (6) to (5) and applying a second-degree Taylor
expansion to the exponent yields



LI(z)

≈ exp

{
−λpIL(d)z + 1/2λL(d)2

2 + 4KI +K2
I

(1 +KI)2
p2Iz

2

}
.

(7)

where KI = ν2I /(2σ
2
I ) is the Rician parameter of an interferer.

One can observe that for z = −it ∈ C,

LI(−it) ≈

exp

{
λpI itL(d)− 1/2λL(d)2

2 + 4KI +K2
I

(1 +KI)2
p2It

2

}
, (8)

which is the characteristic function t 7→ φ(t) = L(−it) of
the normal distribution with mean µI = λpI and variance
s2I = λ(2 + 4KI +K2

I )/(1 +KI)
2pI2.

For the Laplace transform it holds that LI(1)+I(2)(s) =
LI(1)(s)LI(2)(s) for all s. Thus, it is easy to see from (8)
that in case of multiple classes of point processes {Φ(i)} :

Proposition 1 (Distribution of I). The interference I is
distributed as the normal distribution N (µI , s

2
I) with mean

µI =
∑

i

λ(i)L(i)(d)p
(i)
I (9)

and variance

s2I =
∑

i

λ(i)L(i)(d)2
2 + 4K

(i)
I + (K

(i)
I )2

(1 +K
(i)
I )2

(p
(i)
I )2, (10)

where λ(i), L(i),K
(i)
I , p

(i)
I are the density, response function,

Rician parameter and mean transmitting power of the inter-
ferer class i, respectively.

Finally, let us make the following observation that comes
later III-D1 into use in a special case of a Rayleigh faded test
transmitter signal: for z = t ∈ R+, the first term in (7) is
dominating in the exponent and

LI(t) ≈ exp

{
−
∑

i

λ(i)L(i)(d)p
(i)
I t

}
. (11)

B. Inverse distribution of the interference

It can be shown that the inverse of a Gaussian distributed
random variable is approximately Gaussian under certain
conditions [20]. We propose a similar approximation by a log-
normal distribution. The following proposition applies under
the conditions presented in this paper, and it can be verified,
e.g., by Monte Carlo simulations.

Proposition 2 (Inverse of I). Let I ∼ N (µI , s
2
I), then

1/I ∼ Lognormal(−µLN, s
2
LN),

where µLN and sLN are given by µLN = log
√

µ4
I

µ2
I +s2I

and sLN =

√
2

√
log

√
µ2

I +s2I
µI

.

Proof. First, approximate the normal distribution N (µI , s
2
I)

by a log-normal distribution Lognormal(µLN, s
2
LN) with mean

µI and variance s2I . The inverse distribution is simply
Lognormal(−µLN, s

2
LN).

Consequently, the mean of 1/I is

E[1/I] = exp{−µLN + s2LN/2} =
µ2

I + s2I
µ3

I
(12)

and the variance is

V[1/I] = exp{−2µLN + s2LN}(−1 + exp{s2LN})

=
s2I (µ

2
I + s2I )

2

µ8
I

, (13)

where the mean µI and variance s2I of the interference is given
in (9) and (10).

C. Moments of ratio distribution

Should we know the distributions of PTX and 1/I , we can
calculate the moments of the distribution of PTX/I by the
algebra of random variables.

The mean of the ratio distribution PTX/I is

E[PTX/I] = E[PTX]E[1/I], (14)

and the variance is

V[PTX/I] = V[PTX] · V[1/I]+
V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2, (15)

where for the generalized noncentral chi-squared distribution

E[PTX] = ν2TX + 2σ2
TX, (16)

and
V[PTX] = 4(ν2TXσ

2
TX + σ4

TX), (17)

and E[1/I] and V[1/I] are given in (12) and (13).

D. Distribution of SIR

Finally, we will derive the closed-form distribution for the
SIR. The analysis is divided into two sections: for the non-
LOS case (K = 0) in III-D1, and for the partial LOS (K > 0)
in III-D2.

1) Rayleigh fading case: Assuming that the test transmitter
signal is Rayleigh faded (i.e. Rician faded with parameter K =
0), i.e. the power is exponentially faded, we have according
to the approximation (11):

P[SIR ≥ t] = P

[
PTX

I
≥ t

]
= P [PTX ≥ tI]

= EI

[
e−t/pTXI

]
= LI(t/pTX)

≈ e
−∑

i λ
(i)L(i) p

(i)
I

pTX
t
. (18)

In other words, the SIR is exponentially distributed with
rate 1/µSIR =

∑
i λ

(i)L(i)p
(i)
I /pTX should there be no LOS

between the test transmitter and the satellite.



Fig. 2. Comparison of the simulated SIR distributions with gamma dis-
tribution models. Here, KI is the Rician parameter of the non-shadowed
interferers.

2) General fading case: The gamma distribution is the con-
jugate prior of the exponential distribution. Thus, we propose
that the distribution of SIR follows a gamma distribution in
the general Rician fading case.

Gamma distribution depends on the shape parameter k > 0
and scale parameter θ > 0. The mean is given by kθ, and the
variance is given by kθ2. To approximate the distribution of
SIR by the gamma distribution, we match the mean (14) and
variance (15) to the corresponding moments of the Gamma
distribution;

{
kθ = E[SIR] = L(d)E[PTX/I]

kθ2 = V[SIR] = L(d)V[PTX/I].
(19)

Solving the parameters k and θ and substituting (14) and (15),
yields

Proposition 3 (Distribution of SIR). The distribution of SIR
approximates the gamma distribution Γ(k, θ) with parameters

k = L(d)E[PTX/I]
2/V[PTX/I]

= L(d)(E[PTX]E[1/I])2/
(
V[PTX] · V[1/I]+ (20)

V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2
)
,

θ = V[PTX/I]/E[PTX/I]

=
(
V[PTX] · V[1/I]+
V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2
)
/E[PTX]E[1/I], (21)

where the means E[·] and variances V[·] are given for PTX in
(16) and (17), and for 1/I in (12) and (13).

IV. RESULTS

We compare the derived gamma distribution approximation
to Monte Carlo simulated values in the figures 2 and 3 with
varying altitudes and elevation angles. The parameters for the
gamma distribution are given in Proposition 3

We consider that the path-loss function is equal to all
transmitters. This implies that the path-loss function cancels

Fig. 3. Comparison of the simulated SIR distributions with gamma dis-
tribution models. Here, KI is the Rician parameter of the non-shadowed
interferers. For the elevation angles 90◦ of the receiving satellite, the gamma
distribution approximation diverges from the actual values because the density
of interferers is small (λ3dB ≈ 5), and the theory presented in this paper
does not apply.

itself out in the expression of SIR (2). In other words, the
altitude or the elevation angle of the satellite does not affect
the distribution of SIR should λ3dB remain constant. The
only parameters affecting the distribution of SIR are the mean
transmitting powers and fading conditions.

The simulated values are acquired by Monte Carlo simu-
lations by calculating an average over different realizations
of the PPP and fading. In simulations, we use a Gaussian
antenna as given in (3). Furthermore, an additive −84 dBm
noise component is present.

A. Transmitter and receiver characteristics

We consider one type of omnidirectional interfering trans-
mitters transmitting with power 43 dBm. Shadowing is present
at a probability 0.44 in the elevation angles of 35◦, and the
powers of the shadowed transmitters are reduced by 11 dBm.
This leads us to two classes of interferers: shadowed Φ(1)

and non-shadowed transmitters Φ(2). Shadowed interferers
experience Rayleigh fading K

(1)
I = 0, and non-shadowed

interferers experience Rician fading with Rician parameter
K

(2)
I = 65 or K

(2)
I = 11. No shadowing is present with

elevation angles 90◦. Test transmitter power is 69.1 dBm, and
it experiences Rician fading with K = 65 or K = 11. The
interfering transmitters’ properties are set to mimic a realistic
LEO network. The interfering transmitting powers follow FCC
regulations for mobile interfaces operating in 28, 39, and
37 GHz bands in [21]. The fast and slow fading conditions
follow the values given in the survey on terrestrial-satellite
transmitters [22]. Path-loss function L(d) = (3.55d)−2 and
receiving satellites gain width φRX = 1.5/2◦ follows the
characteristics of a SpaceX constellation [23].

B. Remarks on the results

With small densities of interferers (figure 3elevation angle
90◦), the approximation is reasonable, but the tail distribution
diverges as seen in the figure. With high densities (figure



effig:dens2 elevation angle 35◦ and figure 2), the gamma
distribution approximation matches very well. Depending also
on the relative transmitting powers, densities, and shadowing
and fading conditions in the different classes of interferers,
we suggest that at least λ3dB ≈ 5 so that the gamma
function approximation is valid. The variance and skewness
of the distribution increase with lower densities of interferers.
However, the tails are not heavy-tailed (neither in simulations
nor in gamma function approximation) in the sense that they
decay faster than the exponential distribution.

The SIR is smaller with low satellite elevation angles if
the density of interferers is kept constant; approximately 5
dB variation is present in the figures 2 and 3. This is due to
the widening of the footprint of the satellite that causes more
interferers to be present inside the main lobe. It is evident
that a satellite receiver in the lower altitudes tolerates more
interferers per km2 than a receiver in the high altitudes. In
these contexts, the gamma distribution approximation of SIR
can be used to study power control in a terrestrial-satellite link.
The test transmitter fading conditions have a bigger effect on
the SIR distribution than fading conditions of the interferers.

V. CONCLUSION

We derived a gamma distribution approximation for the
distribution of SIR in a terrestrial-satellite link. The approxi-
mation is applicable when the receiver antenna beam pattern
is narrow and the density of interferers is large. With smaller
densities, the interference will become impulsive as there is
a high chance of having no interferers inside the receiving
satellite’s main lobe. We suggest that the gamma distribution is
a good approximation when there are 5 interferers on average
– or more – inside the satellite’s 3 dB footprint. The 1.5◦ 3 dB
beamwidth of the receivers used in this paper is sufficiently
narrow for the approximation to work. We conclude that the
gamma distribution can be used as a prior distribution for the
SIR in a terrestrial-satellite uplink in highly populated areas,
such as cities, where dense (possibly heterogeneous) networks
are causing additive co-channel interference.

The closed-form SIR distribution presented in this paper
is straightforward to derive and applies to various fading
conditions and transmitter characteristics as well as different
altitudes and elevation angles of a LEO satellite. Furthermore,
overlapping heterogeneous interfering networks can be consid-
ered. A downside is that the transmitters have to be considered
to be Poisson distributed, that is, completely independently
located. Furthermore, only omnidirectional antenna patterns
for the interferers were considered. However, these are realistic
assumptions, particularly in the case of mobile user devices.

This paper provides essential insight into the SIR distribu-
tion in an LEO network.
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Meta Distribution of the SIR in a
Narrow-Beam LEO Uplink
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Abstract— We focus on stochastic geometry analysis of a
low Earth orbit (LEO) narrowband terrestrial-satellite uplink
with satellite base stations (SBSs) in a uniform constellation
equipped with narrow Gaussian beams. The served and inter-
fering omnidirectional user equipments (UEs) are distributed
on the Earth’s surface according to a homogeneous Poisson
point process (HPPP) with Nakagami faded signals. This study
presents a detailed but comprehensive mathematical analysis
of several key metrics: the signal-to-interference ratio (SIR),
the SIR meta distribution (MD), the signal-to-interference-plus-
noise ratio (SINR), and the average throughput. Many results
are presented in simple analytical and closed forms containing
more insight than the expressions proposed in prior works. The
results indicate an optimal UE density depending on the altitude,
elevation angle, and the width of the antenna gain, maximizing
the average throughput. However, this optimal density leads to a
significant variance in the user experience regarding link quality
(i.e., the users are not treated fairly).

Index Terms— Low Earth orbit, stochastic geometry, cover-
age probability, meta distribution, average throughput, Lomax
distribution.

I. INTRODUCTION

A. Motivation

F IFTH-GENERATION (5G) and beyond wireless commu-
nication systems are setting new standards of reliability

and connectivity [1]. The emerging Low Earth Orbit (LEO)
satellite networks have the potential to significantly increase
coverage, especially in far-flung areas: incorporating such
networks with terrestrial networks can facilitate a seamless
coverage continuum [2]. Several large LEO constellation
projects are already being developed and planned, including
Starlink, Kuiper, LeoSat, OneWeb, and Telesat. Kuiper,
LeoSat, OneWeb, and Telesat. 3GPP aims to adapt existing
satellite and terrestrial networks to provide direct connectivity
from hand-held equipment to LEO satellites using frequencies
assigned to mobile satellite services or those assigned to
legacy terrestrial networks. An extensive study of potential
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LEO network configurations is presented in [3], indicating
that numerous implementations are possible. Due to the large
footprint, a single satellite can serve several user equip-
ments (UEs). At the same time, the large cell size causes
interference between terrestrial and non-terrestrial users and
systems.

The stochastic geometry system-level analysis offers valu-
able insights that complement other link and system-level
models and simulations of terrestrial and non-terrestrial com-
munications. This analytical method helps us understand how
different deployment parameters affect performance metrics.
In particular, it provides comprehensive information on the
satellite base station (SBS) reliability, coverage probability,
and throughput. Ultimately, this knowledge aids in determining
optimal network configurations and allows for more efficient
allocation of simulation resources.

B. Related Work
As a relatively new concept introduced in [4], the analysis of

the signal-to-interference ratio (SIR) meta distributions (MD)
for terrestrial networks has become well-established in the
literature. Additionally, SIR MD has been applied to the LEO
networks. An analysis of the SIR MD under the Nakagami
fading model was proposed in [5] and [6], where the SIR
MD was studied in a LEO downlink. Both papers model the
satellites by either the homogeneous Poisson point process
(HPPP) or the homogeneous binomial point process (HBPP)
on a sphere and the transmitters as a HPPP, allowing the
ergodic interpretation of the SIR MD as “what fraction of
users can achieve a given transmission reliability for a given
SIR threshold”.1 In [5], the satellites were assumed to have
an omnidirectional antenna beam. In contrast, in [6], a perfect
beam alignment with the terrestrial base station was assumed,
causing no interference to the other devices. To the best of
our knowledge, the SIR MDs for the LEO uplink are yet to
be explored.

The following literature review focuses on papers on the
proposed state-of-the-art stochastic geometry frameworks in
the LEO uplink. A comprehensive literature review addressing
other LEO scenarios can be found in [8]. Furthermore, the
book [9] has been published on the subject. The work in [10]
is one of the first papers addressing the stochastic geometry

1Although strictly speaking, the HPPP is not ergodic on the sphere, the
condition for the ergodicity [7, Def. 2.30] holds approximately for large
densities.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE I
STOCHASTIC GEOMETRY LEO UPLINK AND LEO SIR MD MODELS IN THE LITERATURE

modeling of the LEO uplink, where the coverage probability
and average throughput were studied assuming omnidirec-
tional antennas for both the satellite and the transmitters. As in
many similar works, the PPP model for the satellites has
proven effective in approximating deterministic constellations.
In [11], the SIR distribution was studied for large network
densities in an interference-only channel with a Gaussian
antenna beam under Rician fading with a two-tier shadowing
model. A shadowed Rician model and a realistic ITU-R
antenna beam were used in [12] and [13]. Similar to this paper,
in [12], it was noted that a particular constellation density
maximizes the throughput. The system model is realistic; how-
ever, the derived formulas are complicated to evaluate and may
lack clear insight. A Gaussian mixture model for the fading
with a boxcar-type antenna beam model was used in [14]
and [15]. Modeling was based on working with the mean
interference from the transmitters, which may be accurate with
wide antenna beams; however, the mean fails to grasp the
highly varying nature of the interference in narrow antennas.
Uplink hybrid and direct communication with IoT devices,
including battery lifetime, were studied in [16]. Similar to this
paper and [12], in [16], an optimal density for the satellites
(proportional to the number of Earth transmitters) was found
to maximize the performance. Similar to this paper, a planar
HPPP model was used in [17]. Additionally, in [17], the
Poisson hard-core model was introduced. All of the mentioned
papers and the system model details are summarized in Table I.

We present a tractable analytical framework for the
narrow-beam LEO that yields insightful results distinct from

previous works. Additionally, our paper offers a fine-grained
analysis of the variation in the uplink quality of the SBSs,
which has yet to be addressed in the existing literature.

C. Our Contributions

The contributions of the work are listed as follows.
• We present a novel, simplified, narrow-beam LEO system

model that provides a tractable analytical framework for
stochastic geometry analysis.

• We derive the moments of the SIR MD and study user
experiences in different network settings through the
distribution.

• We derive the SIR distribution in a closed form and the
signal-to-interference-plus-noise ratio (SINR) distribution
in analytic form.

• We derive the average throughput in a simple closed form
and an optimal density for the Poisson layout of UEs that
maximizes the average rate.

• We observe a significant trade-off between the optimal
average throughput and user experience consistency
regarding the link quality.

D. Organization of the Paper

In Section II, we formulate and compare the planar and
spherical system models and introduce the fading and antenna
pattern models. Section III derives the moments of the SIR
MD and provides two different approximations based on the
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Fig. 1. The simplified narrow-beam LEO uplink system model. The SBS
antenna boresight is oriented towards o, the focus point of the elliptical
footprint. The omnidirectionally transmitting UEs {xi} are located according
to the HPPP on the plane. The nearest transmitter, x0, is the served UE.

moments: beta distribution and Chebyshev-Markov inequali-
ties. In Section IV, we study the SIR, SINR, and throughput
distributions. The key insights of the results are summarized
in Section V.

II. SYSTEM MODEL

We present two system models: the simplified planar system
model used in the analysis and the spherical system model
used in the simulations. A sketch of the simplified planar
system model is depicted in Figures 1a and 1b.

A. Approximate Planar Model of the Narrow-Beam LEO
Uplink

We study a short period of use over multiple coherence
times in a high-frequency narrow-band terrestrial-satellite
uplink Nakagami fast-fading channel in a single-tier network.
The link quality from the perspective of a SBS is investigated.
We assume that UEs with omnidirectional antennas, like
mobile phones, are randomly located on the Earth surface,

TABLE II
GLOSSARY OF PRINCIPAL SYMBOLS

represented as a plane. The SBSs can work as an independent
network or complement a terrestrial network, and the inter-
fering transmitters can be considered to be within the same
cell, adjacent cells, overlapping cells, or part of a terrestrial
network served by a terrestrial BS.

The UEs form a HPPP Φ ⊂ R2 of density λ. The Poisson
assumption can be justified by the independent mobility pat-
terns of UEs. Furthermore, the multipath fading of the signals
can make an arbitrary network seem Poisson at the receiver
[18, Sec. 4.3]. The SBSs form a homogeneous point pattern
(deterministic or random), allowing the ergodic interpretation
of the performance metrics over the SBSs. Because the HPPP
is translation invariant, all points are statistically equivalent.
Therefore, we can refer to the concept of a typical SBS. The
SBS antennas are narrow-beam considered to serve a local
homogeneous environment, such as a rural or urban area.
Consequently, the scattering and attenuation caused by the
weather conditions and Doppler shifts are the same for all
relevant UEs, thus not affecting their relative signal strengths
at the SBS.

We study the SIR and SINR distributions at the typical
SBS serving the terrestrial UE from which it receives the
maximum mean signal power. The UEs are transmitting at
the normalized power P = 1. The typical SBS is at altitude
h, and its Gaussian antenna’s G[·] gain boresight is directed
toward a point on the Earth surface for which the SBS is
at the elevation angle ϵ—this is a focus point of the elliptical
footprint, considered the origin o ≜ (0, 0) ∈ R2. The values of
h and ϵ determine the distance to the satellite from o, given by
the geometric relation d̂h,ϵ ≜ h/ sin(ϵ). In this work, we focus
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on LEO altitudes of h ∈ [200, 2000] km. We will consider that
ϵ ≥ 45◦. (We restrict the elevation angle to ensure the
simplified narrow-beam LEO model is accurate. However,
we make an exception in Figures 3a, 3b and 4, where we
compare the spherical and the planar models with the elevation
angle ϵ = 35◦, which is the minimum elevation angle in a LEO
system proposed in [19].)

This work focuses on the SIR and SINR of the nearest
transmitter. The served UE is formally defined as

x0 ≜ argmin{x ∈ Φ : ∥x∥}, (1)

where ∥ · ∥ is the Euclidean distance.
In the following, we write f(x) ∼ g(x), as x → a, if the

limit limx→a f(x)/g(x) = 1. Considering Figure 1b, for each
angle φx between the transmitter x ∈ Φ and the typical SBS
antenna boresight, we have

φx ∼ Dh,ϵ∥x∥, ∥x∥ → 0, (2)

where Dh,ϵ ≜ sin2(ϵ)/h is the derivative of the function
∥x∥ 7→ φx at ∥x∥ = 0 (the details given in Appendix A).
Note that (2) is only the first-order Taylor expansion of φx at
∥x∥ = 0; the approximation is sufficient if the antenna pattern
decays fast for large φx.

Let us define the path loss law by

ℓ(x) ≜ G[φx]

(dx/d0)γ
, γ ≥ 0, (3)

where dx is the distance between the UE and the SBS, and
d0 is a normalizing distance. Combining (2) with (3) yields
ℓ(x) ∼ G[Dh,ϵ∥x∥]/(dx/d0)γ , ∥x∥ → 0.

Furthermore, we assume a narrow antenna beam and the
relevant transmitters are located in a small region close to each
other around o and dx ≈ d̂h,ϵ for the relevant x ∈ Φ. Along
these lines, the random process of path losses {x ∈ Φ : ℓ(x)}
is approximated with the gain process (GP)

G = {x ∈ Φ : G[Dh,ϵ∥x∥]} (4)

multiplied by the constant (d̂h,ϵ/d0)−γ .
G is a particular case of the projection process that has

been extensively studied in the literature [18, Ch. 4]. By the
mapping theorem [7, Thm. 2.34], it is a PPP on (0, 1).2

Because of its analytical tractability, we model the small-
scale fading with the Nakagami-m fading model, where
m ∈ N is the Nakagami fading parameter. For each UE
x ∈ Φ, the amplitude fading gain follows an independent
Nakagami distribution with shape parameter m and spread
parameter 1. Hence, each transmission power is multiplied by
an independent gamma-distributed fading gain gx of mean 1
with shape and scale parameters m and 1/m, respectively.
The Nakagami distribution closely approximates the Rician
distribution, widely utilized as a fading model in satellite
communications [20, Sec. 6.7.1]. Furthermore, the gamma
distributed power fading can be used to approximate the
shadowed Rician power fading distribution [16].

2Interestingly, incorporating independent fading r.v.’s {Hx} the projection
process with the fading {x ∈ Ψ : HxG[Dh,ϵ∥x∥]} can appear Poisson, even
if the underlying Ψ is not a PPP [18, Sec. 4.3].

Fig. 2. Comparison between the Gaussian and [21, ITU-R LEO reference
radiation patterns]. The gain of the Gaussian antenna in the main lobe
(−10 dB lobe) is almost identical to the ITU-R main lobe. However, there
is a slight difference towards the edges of the main lobe. The fast-decaying
Gaussian beam essentially corresponds to the main lobe component.

The antenna gain G[·] : [0,∞) → (0, 1] is assumed to be
Gaussian, i.e.,

G[φ] = 2−φ2/φ2
RX , (5)

where φRX is the halfwidth of the −3 dB antenna gain. Except
Section II-C, we use the value φRX = 1.6◦, corresponding
to the LEO antenna pattern proposed in the International
Telecommunication Union Recommendations (ITU-R) [21].
Despite being an idealized antenna pattern, the Gaussian
response accurately models the main lobe (−10 dB lobe)
of many antenna patterns, particularly the ITU-R pattern, cf.
Figure 2. This work considers the interference energy from
the sidelobes a nonnegative constant noise but is not explicitly
characterized. This approach works as long as the UE density
is high enough and the served UE is likely to be in the main
lobe.3

B. Spherical System Model and Monte Carlo Simulation

A sketch of the geometry of the spherical model is presented
in Appendix B.

We compare the analytical results from the planar model to
Monte Carlo simulations of the spherical model. The Monte
Carlo simulations assume a spherical Earth with a radius of
R⊕ = 6378 km. We denote the HPPP of the UEs visible to
the satellite of density λ on the Earth surface by Θ ⊂ E.
The number of samples depends on the density: we simulate,
on average, 106 UEs inside the −100 dB footprint (of the
Gaussian beam). The elliptical footprint’s antenna boresight
location is the ellipse’s nearest focus point, oE—the ellipse
represented in terms of latitude and longitude. The PPP on the
sphere can be constructed from the PPP on the plane by the
area-preserving mapping (x1, x2) 7→ (1, x1, sin

−1(x2)) from
the rectangle [−π, π] × [−1, 1] to the spherical coordinates.
We use a homography from the ellipse to a circle to find the

3Analogously to the semi-analytical simulation methods [22], the possible
interference component from the sidelobes can be modeled with a constant
corresponding to the mean aggregate power from the interferers outside the
main lobe because of the relatively small variance of the total interference.
Hence, the sidelobe component can be incorporated in a constant noise term.
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SBS antenna gain of each UE. In the Monte Carlo simulations,
the angles {φu}, the distances {du}, u ∈ Θ, and consequently
the path loss law (3) are based on the spherical Earth model
and calculated by basic geometry. For example, we have

dh,ϵ ≜ doE =
√

R2
⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ)

(6)

for the distance between the SBS and the focus point oE ,
where ξ = ξ(ϵ) is the central angle between oE and the
sub-satellite point on the spherical Earth’s surface (the details
given in Appendix B). The fading model is the Nakagami-m,
and the antenna gain is Gaussian (5).

C. Total Received Power and Its Convergence Properties in
the Planar Model w.r.t. the Spherical Model

In this section, we compare the total received power from
all transmitters in the system model presented in Section II
with that of the spherical model in Section II-B.

We define u0 ≜ argmin{u ∈ Θ : du}. The total received
power at the typical SBS from the UEs in the PPP Θ on the
Earth’s surface above the horizon is defined as

P̊tot ≜ I̊ + S̊ =
∑

u∈Θ

guℓ(u) =
∑

u∈Θ

guG[φu]

(du/d0)γ
, (7)

where S̊ is the signal strength at the receiver of the nearest
transmitter u0, and I̊ is the interference component consisting
of the received signal powers from Θ \ {u0}.

We validate the approximate system model by studying the
convergence properties of the mean and the second moment
of the simulated P̊tot to the mean and the second moment of

Ptot ≜ I + S =

∑
x∈Φ

gxG[Dh,ϵ∥x∥]

(d̂h,ϵ/d0)γ
=

∑
x′∈G

gxx
′

(d̂h,ϵ/d0)γ
. (8)

The fading models are equal in the planar and spherical
models, and the difference is in the geometry. Hence, we focus
on the geometric accuracy of the approximate model and
set gx ≡ 1, i.e., m = ∞, in this subsection. The fading
does not affect the first moment of the total received power.
In the following, we refer to Lemma 1 regarding the density
λG(r) = κ̃/r, κ̃ = λπ

(
hφRX/ sin

2(ϵ)
)2

/ log(2), and the
Poisson property of the GP (which is needed for the variance).
For gx ≡ 1, [7, Cor. 4.8] gives the expected value and the
variance, var(Ptot) = E(P 2

tot)− E(Ptot)
2, of Ptot:

E(Ptot) =

(
d0

d̂h,ϵ

)γ ∫

R2

G[Dh,ϵ∥x∥]λdx

=

(
d0

d̂h,ϵ

)γ ∫ 1

0

rλG(r)dr =
dγ0h

2−γπλφ2
RX

sin4−γ(ϵ) log(2)
, (9)

var(Ptot) =

(
d0

d̂h,ϵ

)2γ ∫

R2

G[Dh,ϵ∥x∥]2λdx

=

(
d0

d̂h,ϵ

)2γ ∫ 1

0

r2λG(r)dr =
dγ0 sin

γ(ϵ)

2hγ
E(Ptot).

(10)

Fig. 3. Comparison of the expected total received power based on the
simulated spherical model and the theoretical planar model. The parameters
φRX = 1.6◦, P = 1, λ = 1/km2, γ ∈ {2, 4}, h ∈ [200, 2000] km,
ϵ ∈ [35◦, 90◦] are used.

An interesting observation from (9) and (10) is that for the
free-space path loss exponent γ = 2, for given λ, ϵ, and φRX,
the mean of the total received power does not depend on the
altitude of the typical SBS; the path loss becomes increasingly
prominent, but there are more UEs present in the main lobe
as we increase h. However, var(Ptot) rapidly increases when
we decrease the altitude. On the other hand, Ptot approaches
a constant for large h. For γ > 2, the expected total received
power decreases as the altitude increases. For γ = 4, E(Ptot)
does not depend on the elevation angle of the SBS.

Figures 3a and 3b show the total received powers P̊tot and
Ptot for γ ∈ {2, 4} for different ϵ and h. The insights derived
from the theoretical model of mean and variance apply to
the spherical model, especially for γ = 2. For γ = 2, the
average total received power is approximately independent of
the altitude, and for γ = 4, the received power is almost
independent of the elevation angle.

Figure 4 shows the ratio of the second moments
E(P̊ 2

tot)/E(P 2
tot) w.r.t. the antenna width φRX ∈ [0.6◦, 6.7◦]

for different values of h and γ. The density λ = 1/km2,
and the elevation angle ϵ = 35◦, which is the minimum
elevation angle in a LEO system proposed in [19]. Due to the
geometry, it is the worst-case scenario for the error between
the models. The ratios for ϵ > 35◦ are closer to 1 for each h.
The ratios tend to 1 for γ = 2 as φRX → 0. There is a
threshold after which E(P̊ 2

tot) becomes exponentially larger
than E(P 2

tot). This is caused by the differences in the geometry.
However, the horizon restricting the energy from the UEs
in the spherical model limits this exponential increase for
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Fig. 4. The ratio of the second moments of the simulated and theoretical
total received powers. The parameters h ∈ {600, 1500, 2000} km,
λ = 1/km2, ϵ = 35◦, φRX ∈ [0.6◦, 6.7◦] and γ ∈ {2, 4} are used.

larger φRX. For γ = 4, convergence to 1 does not happen.
This is due to the difference in the averages of {du}u∈Θ and
{dx}x∈Φ, which cancels out for γ = 2. The theoretical model
could be improved using the more complicated dh,ϵ instead of
d̂h,ϵ in (8). However, the theoretical SIR is independent of the
path loss exponent, which also holds (up to the accuracy we
are interested in) in the spherical model. We will validate this
using the path loss exponents γ ∈ {2, 4} in the simulations in
Sections III and IV.

Similar but faster convergence to 1 was observed for the
first moments E(P̊tot)/E(Ptot) than for E(P̊ 2

tot)/E(P 2
tot).

Based on these observations, we put forth that, for γ = 2 or
ϵ = π/2, E(Ptot) ∼ E(P̊tot) and E(P 2

tot) ∼ E(P̊ 2
tot) as φRX → 0.

Furthermore, it is natural to conjecture that the convergence
holds for any moment and thus for the distribution. Hence,
in distribution, P̊tot ≈ Ptot for the narrow beams. We will
demonstrate that similar convergence also applies to the SIR
and SINR.

D. Relative Gain Process

The analysis of Sections III and IV is based on the following
formulation of the relative gain process.

Definition 1 (Relative Gain Process (RGP)): Let Φ ⊂ R2

be a HPPP. The relative gain process is defined as

G ≜
{
x ∈ Φ \ {x0} :

G[Dh,ϵ∥x∥]
G[Dh,ϵ∥x0∥]

}
. (11)

The following lemma gives the density function of the RGP.
The equivalence GP = RGP is a useful implication of the
lemma, with the GP defined in (4).

Lemma 1: The GP and the RGP are inhomogeneous PPPs
on (0, 1) ∋ r with the density function

λG(r) = κ̃/r, (12)

where κ̃ = κ/ log(2) and

κ ≜ λπ

(
hφRX

sin2(ϵ)

)2

(13)

is approximately the mean number of UEs inside a SBS
−3 dB footprint.

Proof: The process {x ∈ Φ : ∥x∥2} is Poisson
distributed on (0,∞) with the density 2πλ [7, Example 2.9].
Consequently, the distances ∥xk∥2 − ∥x0∥2 in G[Dh,ϵ∥xk∥]/

G[Dh,ϵ∥x0∥] = 2−(∥xk∥2−∥x0∥2)/φ2
RX between the kth near-

est point and the nearest point are Erlang distributed with
parameters k ≥ 1 and 2πλ regardless of x0. Hence, without
loss of generality, we can condition x0 = o. Furthermore,
by Slivnyak’s theorem, {x ∈ Φ\{x0} : ∥x∥2−∥x0∥2} reduces
to the process {x ∈ Φ : ∥x∥2} for x0 = o, and the result
follows by applying the mapping theorem [7, Thm. 2.34] to
the GP;

∫ 1

r

λG(y)dy = λπ

(
G−1[r]

Dh,ϵ

)2

= λπ

(
hφRX

√
− log(r)

sin2(ϵ)
√
log(2)

)2

for 0 < r < 1. G−1[·] is the inverse function of G[·]. λG(r)
follows by derivation w.r.t. r and taking the minus sign.

The interpretation of κ as the mean number of UEs
inside the −3 dB footprint follows by solving Dh,ϵ∥xRX∥ =
φRX for the distance ∥xRX∥ to the edge of the −3 dB footprint
and from the area formula of a circle and Campbell’s theorem.
In line with (2), this interpretation of κ is exact in the limit
φRX → 0. □

For any measurable function v(·) : Rd → [0, 1] such
that

∫
Rd | log v(x)|λΨ(x)dx < ∞, the probability-generating

functional (PGFL) GΨ(·) of a point process (p.p.) Ψ is defined
by

GΨ[v] ≜ E
∏

x∈Ψ

v(x). (14)

We use Lemma 1 to derive the PGFL of the RGP
[18, Eq. (3.30)];

GG [v] = exp

{
−
∫

R
(1− v(r))λG(r)dr

}

= exp

{
−κ̃

∫ 1

0

(1− v(r))/rdr

}
. (15)

E. The Signal-to-Interference Ratio

The SIR at the typical SBS can be represented in terms of
the GP. It is defined as

SIRκ,m ≜ S

I
=

(
I

S

)−1

=




∑
x∈Φ\{x0}

PgxG[Dh,ϵ∥x∥]/(d̂h,ϵ/d0)γ

Pgx0
G[Dh,ϵ∥x0∥]/(d̂h,ϵ/d0)γ




−1

= gx0
/
∑

x′∈G
gxx

′, (16)

where x′ = G[Dh,ϵ∥x∥]/G[Dh,ϵ∥x0∥] and {gx}x∈Φ are i.i.d.
Gamma distributed r.v.’s. We represent the SIR in terms of the
interference-to-signal ratio (ISR) in order to represent the SIR
in terms of the relative gain process G. The terms (d̂h,ϵ/d0)

γ

are canceled; therefore, the spatial path loss does not affect
the SIR. This property follows from the planar system model
of the narrow-beam LEO with equal spatial path losses for
all UEs. However, this also holds for the performance metrics
using the spherical model, namely for S̊IR ≜ S̊/I̊ , where S̊
and I̊ are defined in (7); this is a substantial difference from



ANGERVUORI et al.: META DISTRIBUTION OF THE SIR IN A NARROW-BEAM LEO UPLINK 7

the usual terrestrial models, where the SIR depends strongly
on the path loss exponent [18, Eq. (6.64)].

Note that, from Lemma 1, the GP = RGP: the nearest
transmitter distance ∥x0∥ in G can be conditioned arbitrarily
or have an arbitrary distribution as long as the p.p. of the
other transmitters is a HPPP of density λ. It follows that,
after decoding and canceling the signal of the nearest UEs,
the SIR distribution remains the same for the second nearest
transmitters (considered now the nearest). Therefore, for such
successive interference cancellation, the model describes the
SIR at the nearest UEs to their serving SBS and the second
nearest, third nearest, and so on. This property is due to
the second power exponential path loss function, i.e., the
Gaussian antenna gain, that preserves the Poisson property of
the RGP (11).

III. META DISTRIBUTION OF THE SIR

The SIR MD at the typical SBS is the distribution of the
r.v. Pκ,m(θ) ≜ P(SIRκ,m > θ|Φ), and it is defined for 0 ≤
y ≤ 1 as

P(Pκ,m(θ) > y) = P(P(SIRκ,m > θ|Φ) > y)

= EΦ1(P(SIRκ,m > θ|Φ) > y), (17)

where 1(·) is the indicator function.
The averaging in (17) is taken over the ensemble of Φ at the

typical location. However, because Φ is ergodic, the ensemble
average is equal to the spatial average, given a realization
of Φ. In this sense, the SIR MD describes the SBS reliability
in a uniform (or homogeneous) constellation. The SIR MD
gives the fraction of SBSs that reach reliability y, which is
the fraction of time during a short use period that the SIR
threshold θ is reached.

A. Moments of the SIR MD

We use multi-indices to simplify the notation. For
the nonnegative integer tuples Γ = (Γ1,Γ2, . . . ,Γm)
and B = (B1, B2, . . . , Bm), we define the product
BΓ = BΓ1

1 BΓ2
2 · · ·BΓm

m , the multinomial coefficient
(
b
Γ

)
=

b!/(Γ1!Γ2! · · ·Γm!), and the absolute value |Γ| = Γ1 + Γ2 +
· · ·+Γm. We are ready to derive the moments of the SIR MD
M b

κ,m(θ) ≜ E[Pκ,m(θ)b].
Proposition 1 (Moments of the SIR MD): The bth moment

in a narrow-beam LEO uplink when all transmitters experience
Nakagami-m fading is approximately given as a sum over all
Γ such that |Γ| = b:

M b
κ,m(θ) ≈ M̂ b

κ,m(θ)

≜
∑

|Γ|=b

(
b

Γ

)
exp

{
−κ̃

∫ 1

0

1−A(θ, r)Γ

r
dr

}
BΓ,

(18)

where An(θ, r) =
(
1 +m!−1/mθnr

)−m
and Bn =(

m
n

)
(−1)n+1, n = 1, . . . ,m. For m = 1, M̂ b

κ,m(θ) =

M b
κ,m(θ).

Proof: We utilize the PGFL of the RGP (15). The proof
is given in Appendix C. □

For Rayleigh fading, we provide multiple representations
(19)-(23) for the moments.

Corollary 1 (Moments of the SIR MD for Rayleigh Fading):
With m = 1, the expression (18) can be further evaluated as
follows. The first and the second moments of the SIR MD in
a narrow-beam LEO uplink, when all transmitters experience
Rayleigh fading, are given by (recall that M̂ b

κ,1(θ) = M b
κ,1(θ))

M1
κ,1(θ) = (1 + θ)−κ̃, (19)

M2
κ,1(θ) = e−κ̃θ/(1+θ)(1 + θ)−κ̃, (20)

respectively. The general moments b ∈ C are given by

M b
κ,1(θ) = exp

{
−κ̃

∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr

}
(21)

= exp {−θbκ̃ 3F 2(1, 1, 1 + b; 2, 2;−θ)} , (22)

where 3F2(·) is the hypergeometric function. Furthermore, for
b ∈ N,

M b
κ,1(θ) = exp

{
κ̃

(b− 1)!

b∑

k=1

[
b

k

]
Li2−k(−θ)

}
, (23)

where
[
n
k

]
is the unsigned Stirling number of the first kind,

and Li2−k(·) is the polylogarithm.
Proof: Equation (21) follows from (18) for m = 1.

The first two moments can be evaluated through elementary
integration methods from (21). The derivation of (23) is given
in Appendix D. □

As a mathematical curiosity, Li2−k(−θ) also has closed-
form expressions for k ≥ 3 [23, Eq. (6.3)], although relatively
complicated.

B. Approximation of the SIR MD

Using the moments, we present two ways to approximate
the SIR MD: the beta distribution and Chebyshev-Markov
Inequalities.

1) The Beta Distribution: The beta distribution effectively
approximates the SIR MD, especially if no inflection points
exist. If α and β are the shape parameters of the beta
distribution, the first and the second moments are given by
α/(α+ β) and α(α+ 1)/((α+ β)(α+ β + 1)), respectively.
Using the expression (18), or in the Rayleigh fading case,
(19) and (20) for the first two moments and matching them
to the corresponding moments of the beta distribution, we can
solve for α and β:

Proposition 2 (Approximation of the SIR MD With the Beta
Distribution): The parameters α and β for the beta distribution
are given as

α =

(
M̂1

κ,m(θ)(1− M̂1
κ,m(θ))

M̂2
κ,m(θ)− M̂1

κ,m(θ)2
− 1

)
M̂1

κ,m(θ)

β =

(
M̂1

κ,m(θ)(1− M̂1
κ,m(θ))

M̂2
κ,m(θ)− M̂1

κ,m(θ)2
− 1

)
(1− M̂1

κ,m(θ)) (24)

The SIR MD can be approximated by the beta distribution:

P(Pκ,m(θ) > y) ≈





1− Iy(α, β), y ∈ [0, 1],

1, y < 0,

0, y > 1,

(25)
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Fig. 5. Simulated SIR MD and the beta distribution approximations with different SIR thresholds θ and fading variables m ∈ {1, 5}. We plot the thresholds
θ ∈ {−10,−3, 0, 3, 10} dB and θ ∈ {−20,−17,−13,−10,−3} dB (from top to bottom) for κ ∈ {log(2), 10 log(2)}, respectively. The path loss exponent
γ = 2 (recall that, like in the analysis, this does not notably affect the distribution) and the parameters λ ∈ 1.9 · {10−3, 10−4}/km2, h = 1200 km, ϵ = 80◦

and φRX = 1.6◦ corresponding to κ ∈ {log(2), 10 log(2)}, respectively. (Recall that the only essential spatial system parameter is κ. The other parameters
have only a minor impact on the simulated values.) Order 15 CM inequalities are depicted for θ ∈ {0,−13} dB for κ ∈ {log(2), 10 log(2)}, respectively.

where I(·)(α, β) is the regularized incomplete beta
function.

2) Chebyshev-Markov Inequalities: Given a moment
sequence (M̂ b

κ,m(θ))nb=0, the order n CM inequalities give the
pointwise infimum and supremum

inf
F∈Fn

F (y), sup
F∈Fn

F (y) (26)

for any y ∈ [0, 1], where Fn is the set of the distributions that
agree with the moment sequence. The inequalities established
by the infima and suprema are called the CM inequalities
[24, Th. 1]. We use the CM inequalities to validate the
theory by comparing the CM inequalities derived from the
moments (18) to the simulated SIR MD in the spherical model.

C. SIR MD Numerical Results
Figure 5 depicts the SIR MDs for varying densities and

fading parameters. The beta distribution approximations are
shown with the simulated SIR MD P(P(S̊IR > θ|Θ) > y)

using the spherical model, S̊IR = S̊/I̊ . We also plot
order 15 CM inequalities for different θ (we omit the other
inequalities to avoid cluttering the figures). The beta distri-
bution approximation is particularly feasible for the Rayleigh
fading. One can see that for κ = log(2), the variance in relia-
bility is significant: some SBSs have relatively good reliability,
whereas others have a bad connection. In particular, for m = 5,
1/5 of the SBSs reach θ = 10 dB during the use period, and
the rest are experiencing an outage at this threshold. On the
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contrary, for κ = 10 log(2), especially in the Rayleigh fading
case, the variance in the reliability is small. With m = 5, the
variance is more considerable for θ = −10 dB. Otherwise,
the reliability is near 0 or 1; depending on the SIR threshold
needed for the transmission, all SBSs perform very well, or the
connection is permanently down.

IV. SIR, SINR AND THROUGHPUT DISTRIBUTIONS

A. SIR Distribution

The SIR distribution is straightforward to obtain from the
SIR MD since the first moment is just the complemen-
tary cumulative distribution function (CCDF) F SIR

κ,m(θ) ≜
P(SIRκ,m > θ) = M1

κ,m(θ) of the SIR. We denote F̂ SIR
κ,m(θ) ≜

M̂1
κ,m(θ) the approximation of the SIR distribution. If θ is

the SIR threshold needed for successful transmission, F̂ SIR
κ,m(θ)

is the transmission success probability. We provide multi-
ple representations (27) − (30) for the transmission success
probability.

Corollary 2 (SIR Distribution): The transmission success
probability in a narrow-beam LEO Nakagami-m fading
interference-only uplink channel is given for m ∈ {1, 2} by

F SIR
κ,1 (θ) = F̂ SIR

κ,1 (θ) = M̂1
κ,1(θ) = (1 + θ)−κ̃, (27)

F SIR
κ,2 (θ) ≈ F̂ SIR

κ,2 (θ) = M̂1
κ,2(θ)

= 2e
−

√
2θκ̃√
2θ+2

(
θ√
2
+ 1

)−κ̃

− e
−

√
2θκ̃√
2θ+1

(√
2θ + 1

)−κ̃

, (28)

respectively. The expression for general m ∈ N is

F SIR
κ,m(θ) ≈ F̂ SIR

κ,m(θ) = M̂1
κ,m(θ)

=
m∑

n=1

exp

{
−κ̃

∫ 1

0

1− (1 + Cnθr)
−m

r
dr

}
Bn

(29)

=
m∑

n=1

exp

{
κ̃

(m− 1)!

m∑

k=1

[
m

k

]
Li2−k (−Cnθ)

}
Bn,

(30)

where
[
m
k

]
is the unsigned Stirling number of the first kind,

Bn =
(
m
n

)
(−1)n+1 and Cn = (m!)−1/mn, n = 1, . . . ,m.

In the Rayleigh fading case, F SIR
1,κ (θ) = F̂ SIR

1,κ (θ). Recall that
the exponent also has the hypergeometric representation as
in (22).

Proof: The first moment follows directly by substituting
b = 1 to (18). The polylogarithmic expression of the integral
in (29) is derived in Appendix D. The Rayleigh case follows
directly from (19), and the m = 2 case follows from sub-
stituting Li1(−Cnθ) = − log(1 + Cnθ) and Li0(−Cnθ) =
−Cnθ/(1 + Cnθ) to (30). □

With Rayleigh fading, the SIR distribution (27) is a Lomax
(Pareto Type II) distribution with the shape parameter κ̃.

1) Average SIR and Variance: Fading has little effect on the
first moment of the SIR (cf. Section IV-C). Hence, an expres-
sion for the average SIR over the uniformly distributed SBSs

is simply given by integrating the SIR CCDF in the Rayleigh
fading case over the positive half-line:

E(SIRκ,m) ≈ E(SIRκ,1) =

∫ ∞

0

F SIR
κ,1 (y)dy =

1

κ̃− 1
, (31)

for κ̃ > 1. The mean is divergent for κ̃ ≤ 1, that is,
κ ≤ log(2): On average, having less than log(2) UEs inside
the −3 dB footprint, a significant fraction of SBSs have a
very high SIR, and a significant fraction has a low SIR.
Consequently, the expected SIR and the variance are unde-
fined. Under this threshold, the interference-only channel is
inadequate in modeling the mean SINR even for minimal noise
values—physically bounded by the noise. Furthermore, the
nth moment of the Lomax distribution exists if and only if
κ̃ > n, implying that the variance of the SIR is infinite for
1 < κ̃ ≤ 2 and undefined for 0 < κ̃ ≤ 1.

2) Decay Rate of the Tail: The asymptotic decay rate helps
to gain insight into the SIR distribution. Heuristically, we know
that limy→∞ Li2−k(−Cny) = 0 for k > 2; otherwise, the term
exp{Li2−2(−Cny)} = exp{−Cny/(1 + Cny)} decays the
slowest in (30). Estimating the polylogarithm, the asymptotic
decay rate

ρSIR ≜ − lim
y→∞

log(F̂ SIR
κ,m(y))

y
≤ 0. (32)

The condition ρSIR = 0 is equivalent to the heavy-tailed
distribution in that the exponential moment E(etSIRκ,m) is
divergent for any t > 0 [25, Th. 2.6]. The SIR distribution
has a slowly decaying tail for all κ and m. In practice, one
may expect frequent outliers in the SIR.

3) SIR Numerical Results: In Figure 6, we plot the the-
oretical and simulated transmission success probability for
various κ: F̂ SIR

κ,m(θ) and P(S̊IR > θ), respectively. The Lomax
distribution (27) approximates all SIR distributions in the
tail. It can generally be used to model the SIR distribution
in the simple coverage region θ ≥ 1. Other than the tail
distribution, the Lomax distribution gives pessimistic values
for the probability of coverage.

B. SINR Distribution

The tail behavior observed in the model is due to the
lack of sidelobes or noise. In this section, we add a constant
dimensionless noise power term W > 0 to I and analyze the
SINRκ,W,m ≜ S/(I + W ). Define the transmission success
probability F SINR

κ,W,m(θ) ≜ P(SINRκ,W,m > θ).
Proposition 3 (SINR Distribution): In the interference-

plus-noise-limited channel, for m = 1;

F SINR
κ,W,1(θ) = (1 + θ)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃, (33)

and for general m ∈ N;

F SINR
κ,W,m(θ) ≈ F̂ SINR

κ,W,m(θ)

≜
m∑

n=1

exp

{
κ̃

(m− 1)!

m∑

k=1

[
m

k

]
Li2−k (−Cnθ)

}
Bn

· Eκ+1

(
mCnW (d̂h,ϵ/d0)

γθ
)
κ̃, (34)
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Fig. 6. Simulated SIR distributions using the spherical model and the
corresponding theoretical distribution for κ ∈ log(2) · {0.1, 1, 10} and
m ∈ {1, 2, 5}. The parameters γ = 4, h = 600 km, ϵ = 80◦, φRX = 1.6◦

and λ ∈ 7.4 · {10−5, 10−4, 10−3}/km2 were used, which match the
respective κ. (Recall that the only essential spatial system parameter is κ.
The other parameters have only a minor impact on the simulated values.)

where Eκ̃+1(·) is the generalized exponential integral,
[
m
k

]

is the unsigned Stirling number of the first kind, Bn =(
m
n

)
(−1)n+1 and Cn = (m!)−1/mn, n = 1, . . . ,m. Recall

that the exponent has the integral and hypergeometric repre-
sentations (21) and (22), respectively.

Proof: We give the proof with Rayleigh fading. The
proof for the general m is analogous by using the exponential
form to approximate the CCDF of the gamma distributed gx0

,
similar to the derivation given in Appendix C.

F SINR
κ,W,1(θ)

= P

(
gx0 >

∑

x∈G
gxx+

W (d̂h,ϵ/d0)
γθ

G[Dh,ϵ∥x0∥]

)

(a)
= EΦEg

(
e−θ

∑
x∈G gxx

)
EΦ

(
e−W (d̂h,ϵ/d0)

γθ/G[Dh,ϵ∥x0∥]
)

(b)
= E

∏

x∈G

1

1 + θx
Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃

(c)
= (1 + θ)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃. (35)

(a) follows from the equivalence of the GP and RGP, and thus,
G is independent of the served UE x0, and the expectation
of the exponential term (that follows from the CCDF of
the exponential r.v. gx0

) can be separated into the product.
In (b), we used the Laplace transform L1/G[Dh,ϵ∥x0∥](s) ≜
E exp{−s/G[Dh,ϵ∥x0∥]} = Eκ̃+1(s)κ̃ of the inverse largest
gain, which can be derived directly from the definition of
the Laplace transform using the (derivative of the) CDF
P(1/G[Dh,ϵ∥x0∥] < r) = 1 − (1/r)κ̃, which is not difficult
to establish by using the nearest-neighbor distribution of the
PPP on R2 [7, Example 2.11]. (c) follows by evaluating the
PGFL (15) of G. □

For W = 0, we directly retrieve the SIR distribution;
F SINR
κ,0,m(θ) = F SIR

κ,m(θ).

Fig. 7. Simulated SINR distributions using the spherical model and the
corresponding theoretical distribution for κ ∈ log(2) · {0.1, 1, 10} and
m ∈ {1, 2, 5}. The parameters γ = 2, h = 200 km, ϵ = 45◦, φRX = 1.6◦,
W = (d̂h,ϵ/d0)

−γ and λ ∈ 1.8 · {10−4, 10−3, 10−2}/km2 were used,
which match the respective κ. (Recall that the only essential spatial system
parameter is κ. The other parameters have only a minor impact on the
simulated values.)

1) SINR Numerical Results: In Figure 7, we plot the
theoretical SINR distribution and the simulated P( ˚SINR >
θ) ≜ P(S̊/(I̊ +W ) > θ) distribution for various κ. The noise
is set to W = 0.2 · (dh,ϵ/d0)−γ , or equivalently, measured
in decibels w.r.t. the average signal strength of a UE at o is
10 log10(W/(d̂h,ϵ/d0)

−γ) = −7 dB. Contrary to the SIR
distribution, smaller κ does not necessarily produce better
coverage probabilities: With a small κ, the served UE is
likely to be far away from the SBS, and because of the path
loss, the noise will restrict the SINR. Approximately at
κ = log(2), the coverage probabilities are at maximum.

The error, particularly visible for κ = 0.1 log(2), is due to
the low elevation angle ϵ = 45◦, which causes a significant
difference between d̂h,ϵ and dh,ϵ and a significantly elliptical
main lobe footprint in the simulations.

The simple analytic expression F SINR
κ,W,1(θ) (33) derived for

the exponential power fading can be used to model the SINR
tail distribution, generally in the simple coverage region θ ≥ 1.
Other than the tail distribution, F SINR

κ,W,1(θ) gives pessimistic
values for the probability of coverage.

C. Throughput Distribution

The instantaneous channel capacity is defined by Tκ,W,m ≜
log(1 + SINRκ,W,m)/ log(2) [18, Eq. (7.19)]. As observed
from Figure 8, the type of fading has a negligible effect on the
average normalized throughput, or spectral efficiency. Being
simplest, we derive the throughput for the Rayleigh fading
and denote τ̂κ,W ≜ E (Tκ,W,1). For other fading cases, the
exact values can be derived similarly to τ̂κ,W .

1) Average Throughput in the Interference-Limited Chan-
nel: Recall the SIR distribution F SIR

κ,1 (·) (27). Without noise,
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one can evaluate the average throughput:

τ̂κ,0 =
1

log(2)

∫ ∞

0

P(SIRκ,1 > et − 1)dt

=

∫ ∞

0

F SIR
κ,1 (e

t − 1)

log(2)
dt

(a)
=

∫ ∞

0

(1 + v)−κ̃−1

log(2)
dv = 1/κ,

(36)

where we use the integration by substitution v = et−1 in (a).
Recall that κ = κ̃ log(2) (13) is the mean number of UEs
inside the −3 dB footprints of the SBSs.

2) Average Throughput in the Interference-Plus-Noise-
Limited Channel: Recall the SINR distribution F SINR

κ,W,1(·) (33).
With noise, similar to (36), the average throughput is given by

τ̂κ,W =
1

log(2)

∫ ∞

0

F SINR
κ,W,1(v)

1 + v
dv

=
1

log(2)

∫ ∞

0

(1 + v)−κ̃−1Eκ̃+1

(
W (d̂h,ϵ/d0)

γv
)
κ̃dv.

(37)

Throughout the rest of the work, let us (vaguely) mean by
moderate noise that the expected SNR is around 1 for the
served UE at o, i.e., W ≈ (d̂h,ϵ/d0)

−γ , or equivalently, the
decibels w.r.t. the average signal strength of a UE at o is
10 log10(W/(d̂h,ϵ/d0)

−γ) ≈ 0 dB.
τ̂κ,W is complex to evaluate other than numerically for

W > 0. For this reason, we will utilize two approximations
of the exponential integral Eκ̃+1(y) to help evaluate the
integral (37). The following closed-form approximation of
the average throughput is simple yet suitable for moderate or
large noise. It is pessimistic except, not visibly, optimistic for
small κ. Furthermore, Tκ,W ∼ τ̂κ,W ∼ τ̂κ,0 = 1/κ, κ → ∞.

Approximation 1 (A Simple Approximation of the Average
Throughput): For moderate to large noise, the average normal-
ized throughput can be approximated by

τ̂κ,W ≈ Tκ,W ≜ κ̃

(κ̃+ 1)(κ̃+W (d̂h,ϵ/d0)γ) log(2)
. (38)

Proof: First, we use the first order asymptotic approx-
imation Eκ̃+1(y) ≈ e−y/(κ̃ + 1) [26, Th. 51] for
Eκ̃+1(W (d̂h,ϵ/d0)

γv) to help to evaluate (37):

τ̂κ,W ≈ κ̃eW (d̂h,ϵ/d0)
γ

Eκ̃+1(W (d̂h,ϵ/d0)
γ)

(κ̃+ 1) log(2)
.

The final result is achieved by using approximation
Eκ̃+1(y) ≈ e−y/(κ̃ + y) instead of the exponential
integral. □

3) Optimal Average Throughput: We can solve
dTκ,W /dκ = 0 for κ, and get the maximizing

κmax
τ ≜ argmax{κ : Tκ,W } =

√
W (d̂h,ϵ/d0)γ log(2). (39)

For W = (d̂h,ϵ/d0)
−γ , κmax

τ = log(2): This follows
the intuition that, with moderate noise, the performance
metric is maximized at UE density where the expected SIR
approaches infinity (recall (31)). By the void probability of
the PPP, at κ = log(2), the served UE is inside the −3 dB

Fig. 8. Simulated actual and the theoretical expected normalized throughput
for κ ∈ [0, 15] and W ∈ {0, 0.2, 1, 5} · (d̂h,ϵ/d0)−γ (from top to bottom)
and m ∈ {1, 2,∞}. The parameters γ = 4, h = 1200 km, ϵ = 85◦,
φRX = 1.6 and λ ∈ [0, 4.2 · 10−3]/km2 were used, which match the
respective κ. (Recall that the only essential spatial system parameter is κ.
The other parameters have only a minor impact on the simulated values.)

footprint at the probability 1 − exp{− log(2)} = 1/2 and
inside the −10 dB footprint at the probability
1−exp{− log(10)} = 9/10—this reflects a physically sensible
cell size. For W → 0, we approach the interference-only
channel, and κmax

τ = 0 reflects the no-noise-nor-interferers
case, trivially maximizing the throughput (recall (16) and the
independence of the SIR from the distance to the served UE).

4) Average Throughput Numerical Results: In Figure 8,
we plot the average throughput for various κ and W and com-
pare the theoretical E(Tκ,0,m) ≈ 1/κ and E(Tκ,W,m) ≈ τ̂κ,W
to the simulated E log(1+ S̊IR) and E log(1+ ˚SINR), respec-
tively. We show the simulated values in Rayleigh, Nakagami-2,
and Nakagami-∞ scenarios. The simulated results are similar
in all fading scenarios. The simple approximation Tκ,W is very
good for moderate and large noise. For W = 0.2·(d̂h,ϵ/d0)−γ ,
the interference-only expression (36) closely approximates the
throughput for κ > 1. The optimal κ is close to log(2) with all
depicted noise values, as implied by (39). Further, the average
spectral efficiency is relatively flat w.r.t. κ for large noise.

Recall the SIR MD analysis in Section III and Figure 5:
Even though κ ≈ log(2) maximizes the average throughput
for moderate noise, the SBS reliability significantly vary at
this κ. The same insight is reflected in the undefined or infinite
variance of the Lomax SIR distribution (27) for κ ≤ 2 log(2).

V. CONCLUSION

We derived the SIR and its meta distribution (MD), as well
as the SINR distribution and the expected throughput in a
narrow-beam LEO uplink Nakagami channel in the presence
of Poisson distributed interferers. Some expressions of the
distributions are very simple; the SIR follows a Lomax dis-
tribution in the simple coverage region (and in the general
coverage region for the Rayleigh fading), and the average
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throughput is proportional to the inverse of the density of
the user equipments (UEs) in the interference-only channel.
In the interference-plus-noise-limited channel, we obtained a
UE density maximizing the average throughput. Regardless
of the antenna gain width, altitude, or elevation angle, with
moderate noise levels, the maximizing density approximately
corresponds to, on average, κ ≈ log(2) UEs inside the
satellite base stations (SBS) −3 dB footprints. On the contrary,
it was observed that to maintain a consistent user experience,
we must make the distribution of UEs dense because of the
highly varying received signal strengths from the UEs if they
are sparsely located (the Lomax distribution representing the
SIR distribution has a divergent variance for κ ≤ 2 log(2)).

In other words, maximizing average performance by opti-
mizing the UE density comes with the cost of reduced user
fairness. In light of the presented model, a possible solution
for maintaining a consistent user experience is to increase
the density of the constellation: should we consider that each
UE has a serving satellite, the density of UEs determines the
satellite constellation density directly. Furthermore, interfer-
ence cancellation and combination can be implemented so
that a single SBS can serve single or even multiple densely
located UEs with satisfactory SIR and SINR. Alternatively,
it is possible to complement the satellite network with a
terrestrial network that serves the UEs during an outage in the
LEO network. This work helps to characterize the achievable
average performance and the SBS reliability with different
co-channel UE densities, altitudes, elevation angles, and SBS
antenna gain widths.

The paper introduces a novel and analytically tractable
framework for modeling narrow-beam LEO communications
using stochastic geometry. The approach yields simpler results
than existing models in the literature while maintaining high
accuracy. Future research could improve the model’s applica-
bility by investigating explicit shadowing effects and the more
realistic distribution of UEs, particularly regarding the impact
of interference on the narrow-beam and narrowband LEO per-
formance. Furthermore, studying interference cancellation and
signal combination within the framework would be interesting.
The proposed model and the insights of this paper also apply
to the downlink, considering that the SBS footprint locations
on the Earth are distributed according to the HPPP.

APPENDIX A
SCALING CONSTANT

See Figure 9. We have that ζz = tan−1(z/h). The derivative
of φx around o is given approximately by

d

d∥x∥φx =
d

dz
ζz =

d tan−1(z/h)

dz
=

h

h2 + z2

(a)≈ h

h2 − h2+d̂2h,ϵ

(b)
=

h

h2/ sin2(ϵ)
=

sin2(ϵ)

h
= Dh,ϵ,

(40)

where (a) follows from Pythagoras’s theorem, and (b) is
standard trigonometry.

Fig. 9. Geometric interpretation of the variables in Appendix A.

Fig. 10. Sketch of the geometry of the spherical model.

APPENDIX B
GEOMETRY OF THE SPHERICAL SYSTEM MODEL

See Figure 10. Directly from the law of cosines, we have

dh,ϵ(ξ) =
√

R2
⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ). (41)

Furthermore, we may derive the relation between ϵ and ξ:
The law of cosines states that

(R⊕ + h)2 = dh,ϵ(ξ)
2 +R2

⊕ − 2 dh,ϵ(ξ)R⊕ cos(π/2 + ϵ),

(42)

which is analytically solvable for ξ.

APPENDIX C
MOMENTS OF THE SIR MD WITH NAKAGAMI FADING

The moments of the SIR MD are derived as follows.

M (b)
κ,m(θ)

= E


P
(
gx0

> θ
∑

x∈G
gxx

∣∣∣∣Φ
)b



(a)≈ E

[(
1

− Eg

[(
1− exp

{
−m(m!)−1/mθ

∑

x∈G
gxx

})m])b]

(b)
= E

[(
m∑

n=1

(
m

n

)
(−1)n+1
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· Eg exp

{
−nm(m!)−1/mθ

∑

x∈G
gxx

})b]

(c)
=

∑

k1+···+km=b;
k1,...,km≥0

(
b

k1, . . . , km

)

· exp



−̃κ

∫ 1

0

[
1−∏m

n=1

(
1 + (m!)−1/mθnr

)−knm
]

r
dr





·
m∏

n=1

(
m

n

)kn

(−1)kn(n+1). (43)

In (a), we use the upper bound for the incomplete gamma
function presented in the proof of Theorem 2 in [27]. In (b),
we use the binomial theorem. In (c), we use the multinomial
theorem and the Laplace transform of the gamma distribution
and PGFL (15) of the GP. We denote (43) as M̂

(b)
κ,m(θ). With

m = 1, the approximation is exact: M (b)
κ,m(θ) = M̂

(b)
κ,m(θ).

APPENDIX D
POLYLOGARITHMIC REPRESENTATION

It is straightforward to see that for m = 1, the moment
(43) can be expressed with an exponential with the follow-
ing integral, which is further represented as the generalized
hypergeometric function.

∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr = θb3F2(1, 1, 1 + b; 2, 2;−θ)

(44)

for b ∈ C, θ ∈ C \ {−1}. Furthermore, the hypergeometric
series have a polylogarithmic representation. Using the defini-
tion of the hypergeometric series, for |θ| < 1 and b ∈ N;

3F2(1, 1, 1 + b; 2, 2;−θ)

=
∞∑

n=0

(1)n(1)n(1 + b)n
(2)n(2)n

(−θ)n

n!

=

∞∑

n=0

(1 + b)n
(n+ 1)2n!

(−θ)n =
1

b!

∞∑

n=0

(n+ 1)b
(n+ 1)2

(−θ)n

(a)
=

1

b!

∞∑

n=0

∑b
k=0

[
b
k

]
(n+ 1)k

(n+ 1)2
(−θ)n

=
1

b!

b∑

k=0

[
b

k

] ∞∑

n=0

(−θ)n

(n+ 1)2−k

(b)
= − 1

b!

b∑

k=0

[
b

k

]
Li2−k(−θ)

θ
.

(45)

In (a), we used the expansion of the rising Pochhammer
factorial; in (b), we used the definition of the polylogarithm.
The expression can be generalized for θ ∈ C \ {−1} through
the analytic continuation of the polylogarithm.4

4To the best of our knowledge, the interesting connection between the poly-
logarithm and the generalized hypergeometric function (45) is not presented
in other sources except for the special case of b = 0 [28].
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Order Statistics of the SIR and Interference
Cancellation in a Narrow-Beam LEO Uplink

Ilari Angervuori, Student Member, IEEE and Risto Wichman, Senior Member, IEEE

Abstract—We investigate the factorial moment measure of
the signal-to-interference ratios (SIR) at the typical low Earth
orbit base station (LEO BS) with a narrow Gaussian antenna
serving an urban area, with a Gaussian mixture shadowing
model. This SIR process is characterized by a Poisson-Dirichlet
distribution PD(0, ·), which allows us to derive the density of the
factorial moment measure. We analyze the coverage probability
at the typical LEO BS receiving the three strongest signals and
implement successive interference cancellation (SIC). Our results
demonstrate that SIC can notably reduce the variance of the SIR
while maintaining robust performance.

I. INTRODUCTION

WHILE THE ORDER STATISTICS of the signal-to-
interference (SIR) and interference cancellation have

been studied for terrestrial networks [1] by using stochastic
geometry, they are yet to be explored in low Earth orbit (LEO)
networks. We study the SIR of user equipments (UEs) at the
typical LEO base station (BS) by utilizing the narrow-beam
LEO uplink system model from [2] in an urban environment.
We utilize the Gaussian Mixture shadowing model, similar
to [3] and [4], using the parameters presented in [5]. The
density of the factorial moment measure of the signal-to-
total-interference (STIR) process follows a Poisson-Dirichlet
distribution PD(0, ·) (contrary to PD(·, 0) in [1]), of which the
factorial moment measure is well-known. We derive the joint
pdf of the STIR and SIR and study the performance metrics of
the three strongest UE signals with and without successive in-
terference cancellation (SIC) schemes. In [2], it was observed
that the system parameters optimizing the average throughput,
corresponding to mean log(2) user equipments (UEs) inside
a LEO BS −3 dB footprint, leads to a high variation in the
SIR over the LEO BSs. We demonstrate that the link is more
stable with interference cancellation. We show that with the
SIC, the number of UEs inside a LEO BS −3 dB footprint
can be doubled while maintaining the average performance of
the strongest UE but profoundly reducing the variance in the
SIR. Furthermore, the coverage probability of UEs with less
strong signals drastically improves.

II. SYSTEM MODEL

A narrow-band LEO uplink is considered. The UEs follow
a homogeneous PPP Φ ⊂ R2 of density λ. The LEO BSs form

The work was supported by the Research Council of Finland Grant 339446.
Ilari Angervuori and Risto Wichman are with the Department of

Electrical Engineering, Aalto University, Espoo, 02150, Finland. (email:
ilari.angervuori@aalto.fi; risto.wichman@aalto.fi).

TABLE I: Principal symbols the values and units in the numerical results. We
denote (approximate) proportionality “∝” or equality “=” to a variable. For
a dimensional number, we denote the units “SI” and “[non-SI].”

Symbol Explanation Values and units
h Receiving LEO BS altitudes. 1000 km
α Power path loss exponent. 4
λ The density of Φ and Θ, i.e., the mean

number of UEs inside an unit area.
{0.83, 13.3}
10−4/km2

ϵ The typical LEO BS elevation angle
w.r.t o.

(π/2, π/6) rad
= (90, 30)[°]

pLoS LoS probability; pLoS ∝ sin(ϵ). (0.992, 0.493)
µLoS Mean of the LoS component of

the Gaussian mixture shadow fading
model.

0 [dB]

µNLoS Mean of the NLoS component. −26 [dB]
σ2

LoS Variance of the LoS component. 42 [dB]
σ2

NLoS Variance of the NLoS component. 62 [dB]
φRX Half-width of the −3 dB antenna gain. 0.028 = 1.6[°]
κ Average number of UEs inside a −3 dB

footprint; κ = πλ
(
φRXh/sin

2(ϵ)
)2.

(1.63, 6.51)

υ Fraction of effective UEs; υ ∝ sin(ϵ). (0.85, 0.426)
κυ Average number of effective UEs inside

a −3 dB footprint.
{2, 4} × log(2)

θ SIR threshold of a uccessful transmis-
sion.

(0.2, 10) =
(−7, 10) [dB]

τ SIR threshold of a successful interfer-
ence cancellation.

0.2 =
−7 [dB]

a homogeneous point process (p.p.) possibly with a different
density than the UEs. Because of the translation invariancy of
the PPP, all locations are statistically equivalent, and we define
the origin o to represent the typical LEO BS footprint focus
point.

The path loss, representing the antenna gain at the typical
LEO BS, is given over the planar distance r ∈ [0,∞) as a
Gaussian function

G(r) = 2−(Dh,ϵr)
2/φ2

RX . (1)

The angle φRX denotes the −3 dB antenna gain width.
Furthermore, the scaling constant Dh,ϵ ≜ sin2(ϵ)/h is a first-
order coefficient of the Taylor expansion of the angle φr w.r.t.
the boresight of the typical antenna pattern. (Thorough details
in [2].)

A. Shadowing

1) Gaussian mixture shadowing model
Consider a two-tier {LoS,NLoS} (line-of-sight and non-

line-of-sight) Gaussian mixture shadow fading model with the
parameters µLoS = 0 dB, σLoS = 4 dB, µNLoS = −26 dB, and
σNLoS = 6 dB, which correspond to an urban environment
[5]. Assuming i.i.d. power shadow fading for all UEs, the
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(a) Interpretation of the planar system model with the satellites in adjacent
orbits serving an urban area and a realization of the UEs. The altitudes are

not to scale.

(b) The typical LEO BS as seen from the side. The transmitters are projected
into line (0,∞) according to their norm.

Fig. 1: The simplified narrow-beam LEO uplink system model. The satellite
antenna boresight is oriented towards o, the focus point of the elliptical
footprint. The omnidirectionally transmitting UEs {xi} are located according
to the homogeneous PPP on the plane. The transmitter with the strongest
signal is the first-served UE.

typical shadowed transmit power HMLN follows a log-normal
mixture distribution;

HMLN ∼ pLoSLN (ρµLoS, (ρσLoS)
2)

+ pNLoSLN (ρµNLoS, (ρσNLoS)
2), (2)

where pLoS = 1 − pNLoS is the LoS probability as in Figure
2b. Considering a natural base for the log-normal distribution,
the constant ρ ≜ log(10)/10 normalizes the parameters
µLoS, σLoS, µNLoS, and σNLoS, ensuring that the conditioned
r.v.’s 10 log10(HMLN |LoS) and 10 log10(HMLN |NLoS) eval-
uate to r.v.’s following the normal distributions N (µLoS, σ

2
LoS)

and N (µNLoS, σ
2
NLoS), respectively.

2) Defective exponential shadowing distribution
As a compromise between analytical tractability and re-

alism, we introduce a defective exponential power fading
distribution for the UEs, described by the distribution function

FHExp(t) = υe−t, t > 0. (3)

Essentially, this is a mixture distribution. Namely, 0 ≤ 1−υ <
1 denotes the probability that the shadowed signal is entirely
attenuated and takes the value of zero, otherwise, the power
follows the exponential distribution.

We introduce a scaling term, Υ, to ensure that the means
of the log-normal mixture distribution and the defective expo-
nential distribution match: E(ΥHMLN ) = E(HExp) = υ. By
equating the first two moments of HExp (l.h.s.) and ΥHMLN
(r.h.s.)



υ = Υ
(
pLoSe

µLoS+σ2
LoS/2 + pNLoSe

µNLoS+σ2
NLoS/2

)

2υ = Υ2
(
pLoSe

2(µLoS+σ2
LoS) + pNLoSe

2(µNLoS+σ2
NLoS)

)
,

(4)
we can solve for the parameter υ:

υ =
2
(
pLoSe

µLoS+σ2
LoS/2 + pNLoSe

µNLoS+σ2
NLoS/2

)2

pLoSe
2(µLoS+σ2

LoS) + pNLoSe
2(µNLoS+σ2

NLoS)
. (5)

The parameter υ = υ(ϵ) varies with the elevation angle,
influencing the shadow fading characteristics. The parameter
Υ holds no significance in an interference-limited scenario, as
the equal scaling of all UE powers neutralizes its effect.

Remark. The variable 0 < υ ≤ 1 is not generally solvable for
all log-normal distribution parameters (by matching the first
two moments). Broadly said, the variance of the shadowing
has to be large enough. However, the variable 0 < υ ≤ 1
is solvable for almost every shadowing scenario in [5],
particularly for the urban scenario.

B. The spherical Earth model in the Monte Carlo simulations

The planar model approximates the spherical system model,
where the UEs are located on the spherical Earth surface of
radius R⊕ = 6378 km according to a homogeneous PPP Θ
of density λ represented in spherical coordinates. This p.p.
can be constructed from Φ ⊂ R2 by a preserving mapping.
Namely, for x = (x1, x2) ∈ [−π, π]× [−1, 1] ∩ Φ/R⊕,

(x1, x2) 7→ (R⊕, x1, sin
−1(x2)) = (R⊕, θx1

, ϑx2
) ∈ Θ. (6)

The total interference at the typical LEO BS from the UEs
in the PPP Θ∩E, with E denoting the area above the horizon
of the typical LEO BS, is defined as

I̊ ≜
∑

x∈Θ∩E

HMLN xG(φx)

(dx/d0)α
, (7)

where d0 is a normalizing constant. The simulated values are
based on the spherical model, the angle φx and distance dx
calculated precisely for each x ∈ Θ ∩ E, and accurate i.i.d.
Gaussian mixture shadowing HMLN x.

III. ANALYSIS

For a more detailed analysis and planar model comparison
to the spherical model, please refer to [2].

Given i.i.d. shadowing variables {Hx}x∈Φ, we define the
process of the received signal powers at the typical location,
referred to as the gain process (GP), by

G ≜ {HxG(∥x∥) : x ∈ Φ} , (8)
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where ∥x∥ is the Euclidean distance from o.
The GP is a projection process mapping the points from R2

into (0,∞) and, as such, forms a nonhomogeneous PPP [6,
Section 4.2.5].

Since the variables {Hx}x∈Φ are i.i.d., we can denote the
typical shadowing variable simply as H without the subscript.

Proposition 1 (Density of the GP). Let FH(·) be the (possibly
degenerate) complementary cumulative distribution function
(ccdf) of a fading variable H . The density function of G is
given by

λG(t) = κ̃FH(t)/t, t ∈ (0,∞), (9)

where κ̃ = κ/log(2) and

κ ≜ πλ

(
φRXh

sin2(ϵ)

)2

(10)

is approximately the average number of UEs inside a −3 dB
footprint.

Proof. Let fH(·) be the pdf of H . Denote G−1(·) as the gener-
alized inverse of G, defined as G−1(y) = inf{x : G(x) < y}.
According to [6, Eq. 4.55],

∫ ∞

t

λG(y) dy = πλE
[(
G−1(t/H)

)2]

= πλ

∫ ∞

t

(
−φRX

√
− log(t/h)

Dh,ϵ

√
log(2)

)2

fH(h) dh

= −κ̃

∫ ∞

t

log(t/h)fH(h) dh

(a)
= −κ̃

[
log(t/h)FH(h)|∞t +

∫ ∞

t

FH(h)

h
dh

]
.

In (a), we use integration by parts. The result follows by
differentiating with respect to t and applying the negative
sign. Note that a necessary condition for this procedure is
that

∫∞
t

log(t/h)fH(h) dh converges for all t > 0.
Please refer to [2, Lemma 1], for throughout explanation of

the interpretation of κ.

The total interference, or total received power, is defined as
the sum of the GP at the footprint location o of the typical
LEO BS:

I ≜
∑

x∈Φ

HxG(∥x∥) =
∑

x∈G
x. (11)

The mean and the variance of I are respectively given by

E (I) =

∫ ∞

0

tλG(t)dt = κ̃

∫ ∞

0

FH(t)dt = κ̃E(H), (12)

and

Var (I) =
∫ ∞

0

t2λG(t)dt = κ̃

∫ ∞

0

tFH(t)dt

= κ̃
Var(H) + E(H)2

2
= κ̃E[H2]/2. (13)

Note that matching the first two moments of the fading
distributions (2) and (3) is equivalent to matching the mean
and the variance of the total interference.

(a) The density of the GP for κυ ∈ {2 log(2), 4 log(2)} using ϵ = π/2.
Interestingly, the elevation angle did not have visible effect on the density in
the Gaussian mixture model.

(b) The dependence of the shadowing parameters pLoS and υ on the elevation
angle. The parameters are approximately proportional to the sine function.

Fig. 2: The density of the GP and shadowing parameters in the Gaussian
mixture and defective exponential shadowing models.

A. Laplace transform of the total received power

With defective exponential shadowing Hexp, for Re(s) > 1,

LI(s) ≜ E
(
e−sI

)
= exp

{
−
∫ ∞

0

(1− e−sr)λG(r)dr

}

= exp

{
−κ̃

∫ ∞

0

(1− e−sr)FHexp(r)/rdr

}

= exp

{
−κ̃υ

∫ ∞

0

(1− e−sr)e−r/rdr

}
= (1 + s)−κ̃υ ,

(14)

which is the Laplace transform of the gamma distribution with
the shape parameter κ̃υ.

B. Order statistics of the STIR and SIR processes

At the typical LEO BS, we denote the signal-to-interference
ratio (SIR) process of the UEs as follows:

Ψ = {Z : Z ∈ Ψ} ≜
{

u

I − u
: u ∈ G

}

=

{
HxG(Dh,ϵ∥x∥)

I −HxG(Dh,ϵ∥x∥)
: x ∈ Φ

}
, (15)
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where I is defined in (11). Similarly, the signal-to-total-
interference ratio (STIR) process is defined as

Ψ′ = {Z′ : Z′ ∈ Ψ′} ≜
{u
I
: u ∈ G

}
. (16)

We can always recover the process from another:

Ψ =

{
Z′

1− Z′ : Z
′ ∈ Ψ′

}
, Ψ′ =

{
Z

1 + Z
: Z ∈ Ψ

}
. (17)

Let θ denote the SIR threshold for successful transmission.
The event Ψ ∋ Z > θ is equivalent to Ψ′ ∋ Z′ > θ′ with
θ′ ≜ θ/(1 + θ) and θ ≜ θ′/(1− θ′).

We denote Z′
(1) > Z′

(2) > Z′
(3) . . . as the order statistics

of the STINR process Ψ′, such that Z′
(1) is the largest value

in Ψ′. Through the monotonicity of the relations (17), the
order statistics of the STIR process are equivalent to the order
statistics of the SIR process.

Proposition 2. The density of the nth factorial moment mea-
sure of the STIR process at the typical LEO BS with a narrow
Gaussian antenna beam and Gaussian mixture shadow fading
is approximately given by

µ′(n)(t′1, . . . , t
′
n) = (κ̃υ)n

n∏

j=1

t′
−1
j


1−

n∑

j=1

t′j




κ̃υ−1

, (18)

whenever t1 > · · · > tn and
∑n

i=1 ti ≤ 1, and 0 otherwise.

Proof. The total interference can be characterized by the
gamma process at time κ̃υ [7, Eq. 8] (recall (14)). Hence,
the STIR process Ψ′ can be characterized by a Poisson-
Dirichlet distribution PD(0, κ̃υ) that has the given density [8,
Eq. 2.3].

The partial densities can be derived from the density of the
nth factorial moment measure as [1, Eq. 62]

µ′(n+i)
n (z′1, . . . , z

′
n)

=

∫ 1

z′
n

· · ·
∫ 1

z′
n

µ′(n+i)
(z′1, . . . , z

′
n, ζ

′
1, . . . , ζ

′
i)dζ

′
1 . . . dζ

′
i, (19)

the support of the density being in the region
∑n

i=1 z
′
i+iz′n ≤

1.
The joint pdf of the k strongest values of the STIR process

(Z′
(1), . . . ,Z

′
(n)) is given as a series expansion involving the

partial densities [1, Eq. 64]

f ′
(k)(z

′
1, . . . , z

′
k) =

imax∑

i=0

(−1)i

i!
µ′(k+i)

k (z′1, . . . , z
′
k), (20)

for z′1 > z′2 > · · · > z′k and f ′
(k)(z

′
1, . . . , z

′
k) = 0 otherwise.

The upper bound for the index imax < 1/z′k − k corresponds
to the non-zero terms of the series expansion.

The n-coverage probability that the first n strongest signals
reach the threshold θ is given by

P(n)(θ) ≜
∫ 1

θ′
· · ·
∫ 1

θ′
f ′
(k)(z

′
1, . . . , z

′
k)dz

′
1 . . . dz

′
k, (21)

with θ′ = θ/(1 + θ) and imax < 1/θ′ − k.

The density of the nth factorial moment measure of the SIR
process can be extracted from µ′(n) [6, Corollary 6.1.3]:

µ(n)(z1, . . . , zn)

=

n∏

j=1

1

(1 + zj)2
µ′(n)

(
z1

1 + z1
, . . . ,

zn
1 + zn

)
(22)

C. SIR under interference cancellation

Let (u(1), . . . , u(k)) ⊂ G represent an ordered set of points
in the GP, where u(1) denotes the strongest signal at the
typical LEO BS. The signals with indices in the set [k] ≜
(1, . . . , k), k ≥ n are canceled from the total interference. We
denote the SIR with interference cancellation as

SIRn,[k] ≜
u(n)

I −∑j∈[k] u(j)
. (23)

Let us first study SIR1,[1]. Combining (18), (20), and (22),
we can derive a closed-form for the SIR pdf of the strongest
signal in the simple coverage region z ≥ 1: f(1)(z) =

κ̃υ (z + 1)
−κ̃υ

/z 1. The second moment of the SIR is bounded
by

E(SIR2
1,[1]) ≥

∫ ∞

1

f(1)(z)z
2dz =

21−κ̃v(κ̃v)2

(κ̃υ − 1)(κ̃υ − 2)
, (24)

which is divergent for κ̃υ ≤ 2, i.e., for less than 2 log(2)
effective UEs inside a −3 dB footprint on average, the first
and second moments—hence, also the variance—are infinite
(or undefined). Despite the strong average SIR, the infinite
variance for κ̃υ ≤ 2 is not desirable if we want a consistent
user experience in the link quality. We demonstrate that
successive interference cancellation (SIC) can improve user
fairness.

Under interference cancellation, we have the following
identity in terms of the STIR process [1, Eq. 69]:

P(SIRn,[k] > θ) = P


Z′

(n) + θ′
∑

j∈[k]\{n}
Z′
(j) > θ′


 . (25)

Following the Poisson-Dirichlet order statistics of Z′
(1) >

Z′
(2) > . . . , if Z′

(1) has a finite variance, each {Z′
(j)}j∈[k] also

has a finite variance, hence SIRn,[k] has a finite variance.
Finally, we consider the SIR under the (perfect) successive

signal cancellation (SIC-SIR). A necessary condition for the
successful reception of the nth strongest UE at the typical
LEO BS is that the preceding n signals are successively
decoded and removed from the interference. Formally, {Z′

m+
τ ′
∑m−1

j=1 Z′
j > τ ′} for all m ∈ {1 . . . n}, where the signal

detection threshold is denoted as τ = τ ′/(1 − τ ′) ≤ θ.
When the first n signals are successfully removed from the
interference, the nth UE is considered covered if SIRn,[n] > θ.
If not, the SIC continues until the SIRn,[k] > θ or the
maximum number of interference cancellation stages K is
reached.

1The SIR has a heavy-tailed distribution, cf. [2, Eq. (32)].
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Proposition 3. Consider the SIC with at most K ≥ n
interference cancellation stages. The coverage probability of
the UE with nth strongest signal is given by

P(n,K)
SIC (θ, τ) ≜

K∑

k=n

∆
(n,k)
SIC (θ, τ), (26)

where

∆
(n,k)
SIC (θ, τ) ≜

imax∑

i=0

(−1)i

i!

∫ 1

0

· · ·
∫ 1

0

k∏

m=1

1


z′m + τ ′

m−1∑

j=1

z′j > τ ′


1


z′n + θ′

∑

j∈[k]\{n}
z′j > θ′




×


1(k > n)1


z′n + θ′

∑

j∈[k−1]\{n}
z′j < θ′


+ 1(k = n)




× 1(z′1 > · · · > z′k)µ
′(k+i)
k (z′1, . . . , z

′
k)dz

′
1 . . . dz

′
k, (27)

with the upper summation limit bounded by imax < 1/τ ′−1 =
1/τ .

Proof. The expression follows using the joint pdf of the
order statistics (20)—furthermore, the upper l.h.s. conditioning
allows the relaxation of imax. Namely, a necessary condition
is z′k + τ ′

∑k−1
j=1 z

′
j > τ ′. By simple algebra,

∑k−1
j=1 zj >

1 − zk/τ
′. Recall the condition on the non-zero terms of

µ′(k+i):
∑k

j=1 z
′
j + iz′k =

∑k−1
j=1 z

′
j + z′k + iz′k ≤ 1. The

condition certainly does not hold if 1−zk/τ
′+z′k+iz′k > 1. We

arrive at the inequality z′k (−1/τ ′ + 1 + i) > 0. Divide both
sides by z′k > 0, and the general upper bound of i follows.

IV. NUMERICAL RESULTS AND CONCLUCIONS

Fig. 3: The n-probabilities for κv = 2 log(2) (the average number of effective
UEs inside a −3 dB footprint).

Figures 3 and 4 depict the n-probabilities (21) and SIC-SIR
for κ̃υ = 2 and κ̃υ = 4 (27) with K = 3, respectively. We use
the values presented in Table I in the simulations. However, the

Fig. 4: The SIC-SIR for doubling the average number of effective UEs inside
the −3 dB footprints compared to Figure 3; κυ = 4 log(2).

crucial system parameter is κ̃υ. Hence, for example, instead
of scaling λ, we could adjust the width of the antenna gain
for each elevation angle according to (5) and (10) to match
the corresponding κ̃υ ≡ κυ/ log(2).

The figures illustrate that SIC-SIR can achieve comparable
coverage probabilities for the strongest UE within the region
θ ∈ (−7, 10) dB while doubling the average number of
effective UEs inside a −3 dB footprint, denoted as κυ.
Additionally, the performance of the 2nd and 3rd UEs is
significantly enhanced. Consequently, a single LEO BS could
potentially serve multiple UEs effectively.

Further, similar to (24), we can calculate an upper bound
for the variance of the SIR of the strongest signal before inter-
ference cancellation for κ̃υ = 4: var(SIR1,[1]) = E(SIR2

1,[1])−
E(SIR1,[1])

2 ≤ 1.2. This represents a significant improvement
compared to the infinite variance for κ̃υ = 2.

We conclude that interference cancellation, particularly suc-
cessive interference cancellation (SIC), is a viable solution
for mitigating the considerable variability in link quality
experienced by users in a narrow-beam low Earth orbit (LEO)
uplink. These findings are also relevant to the downlink, given
that the LEO footprint locations follow a Poisson distribution
on the Earth’s surface.
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Abstract—Interference is a significant limiting factor, partic-
ularly in emerging dense Low Earth Orbit (LEO) networks. In
the LEO network, the interference is spatially and temporally
correlated. Especially at narrow-beam LEO base stations, the
spatial variation in the interference can be significant, and
multipath fading introduces short-term temporal variation. While
developing novel stochastic geometry analysis, we explore the
spatio-temporal interference correlation properties in the LEO
uplink. Furthermore, we propose an ALOHA medium access
control scheme to equalize the performance at each link while
preserving the optimal average throughput.

Index Terms—LEO, interference, Poisson point process, cor-
relation coefficient, ALOHA

I. INTRODUCTION

The rapid proliferation of low Earth orbit (LEO) satellite
constellations has revolutionized global connectivity, enabling
low-latency communications for diverse applications, partic-
ularly in narrowband communication. However, the dense
LEO networks introduce significant interference challenges,
particularly in the uplink, where user terminals compete for
limited spectrum resources amid dynamic orbital geometries
[1]. This interference is intensified by the high mobility of
LEO satellites, leading to time-varying channel conditions and
potential spectrum sharing conflicts with terrestrial networks.

Stochastic geometry has emerged as a powerful tool for an-
alyzing these spatio-temporal correlations, providing tractable
models for coverage probability, rate, and interference dis-
tribution in non-homogeneous satellite networks. By treat-
ing the transmitters as random point processes, such as the
homogeneous Poisson point process (PPP), researchers can
derive closed-form expressions for performance metrics in the
terrestrial networks, capturing both long-term spatial depen-
dencies and short-term temporal fluctuations induced by fading
channels [2], [3].

To address these challenges, medium access control (MAC)
schemes like ALOHA have been adapted for LEO uplinks,
offering simplicity and scalability while aiming to equalize
link performance across varying interference landscapes [4].
In particular, slotted ALOHA variants optimize throughput
by allocating traffic loads dynamically, mitigating packet col-
lisions in multi-satellite scenarios [5]. This work develops

The work was supported by the Research Council of Finland Grant 339446.
Ilari Angervuori, Abid Afridi and Risto Wichman are with the Department
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a stochastic geometry-based framework to explore spatio-
temporal interference properties and proposes an enhanced
ALOHA protocol that preserves optimal average throughput
while ensuring equitable performance per link, leading to more
resilient LEO networks.

To the best of our knowledge, the correlation functions in
the LEO network by utilizing the stochastic geometry tools
have yet to be explored.

II. SYSTEM MODEL

Fig. 1. The typical LEO BS seen from the side. The transmitters are projected
into line (0,∞) according to their norm.

A LEO narrowband uplink is considered with narrow-
beamed LOS BSs. The LEO BSs form a uniform constellation,
whereas the Earth transmitters, called user equipments (UEs),
form a homogeneous PPP Φ on the plane R2, and they have
omnidirectional antennas. Each LEO BS serves the closest UE.
We consider an ALOHA medium access control (MAC), and
each UE is scheduled to transmit at an independent probability
p. Because we assume a narrow Gaussian beam, which decays
fast, the UEs are spread in a relatively small area. Hence, the
distances between the LEO BS and each (relevant) transmitter
are approximated as equal dx ≈ d̂h,ϵ for all x ∈ Φ, where h is
the altitude of the LEO BS and ϵ is the elevation angle. We
study a typical LEO BS, of which antenna boresight is directed
at origin o ≜ (0, 0) ∈ R2 (see Figure 2; however, h is not in
scale). Further, since the spatial path losses cancel in the SIR,
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without loss of generality, we may assume a normalized d̂h,ϵ.
Similarly, the transmitting powers are normalized. A sketch of
the system model is depicted in Figure 1.

TABLE I
GLOSSARY OF PRINCIPAL SYMBOLS

Symbol Explanation
G(·) The LEO BS antenna gain.
φRX Halfwidth of the LEO BS −3 dB gain.

Φ ⊂ R2 Homogeneous PPP on the plane.
λ Density of Φ.

p ∈ (0, 1] The ALOHA parameter.
Φ(k) ⊂ Φ The homogeneous PPP of the user equipments (UEs)

scheduled by the ALOHA at time k.
Hx = Hx(k) The fading gain of mean 1 of a transmitter x ∈ Φ.

G,G1 The gain process (GP)—latter denotation if Hx ≡ 1.
G(k) ⊂ G The gain process of the ALOHA scheduled Φ(k).

∥x∥ Distance of x ∈ Φ from the origin o = (0, 0) ∈ R2.
x0 = x0(k) The nearest UE to the typical LEO BS in Φ(k).

x A point location x ∈ R2.
h Altitude of the LEO BSs.
ϵ Elevation angle of the LEO BSs.

Dh,ϵ A scaling constant of ∥x∥; Dh,ϵ = sin2(ϵ)/h.
κ Parameter that reflects the approximate mean number

of UEs inside a LEO BS −3 dB footprint.
κ̃ κ/ log(2).
θ SIR or SINR threshold for a successful transmission.

Io = Io(k) Total interference at the typical SBS at time k.

The Gaussian antenna pattern is defined at the location
x ∈ R2

G(∥x∥) = 2−(Dh,ϵ∥x∥)2/φ2
RX , (1)

where φRX = 0.028 (= 1.6◦) corresponds to the −3 dB gain
half-width proposed in [6, ITU-R LEO reference radiation
patterns]. The scaling constant Dh,ϵ ≜ sin2(ϵ)/h ≈ φx/∥x∥ is
the first-order coefficient of the Taylor expansion of the angle
φx between the antenna boresight and the location x ∈ R2.
See details in [7][Appendix A].

Let Φ be a homogeneous PPP representing the UEs on the
Earth surface. Let {Hx}x∈Φ be i.i.d. RVs with finite variance
(representing power fading in this work). The Gain process
(GP) is defined as the Gaussian projection process

G ≜ {HxG(∥x∥) : x ∈ Φ} . (2)

Furthermore, denote G1 ≜ {G(∥x∥) : x ∈ Φ}.
Let Φ(k) ⊂ Φ be the set of transmitting UEs scheduled by

the ALOHA at time k. The corresponding GP at the typical
LEO BS is denoted as G(k) ⊂ G.

The total interference at time instant k at the location z ∈ R2

is

Iz = Iz(k) ≜
∑

x∈Φ(k)

Hx(k)G(∥x− z∥) (3)

=
∑

x∈Φ

1(x ∈ Φ(k))Hx(k)G(∥x− z∥),

where 1(·) is the indicator function modeling the ALOHA with
the transmission probability p. Each Hx(k) is assumed to be
ergodic, and because of the i.i.d. property, we can refer to a
typical fading gain (or more generally, a signal) H . Since the
homogeneous PPP is translation invariant, the interference at

each point is identically distributed. We denote the interference
at the typical LEO BS with

Io(k) =
∑

x∈Φ(k)

Hx(k)G(∥x∥) =
∑

x∈G1(k)

Hx(k)x =
∑

x∈G(k)
x.

(4)
The nearest (and served) UE is formally defined as

x0 = x0(k) ≜ argmin{x ∈ Φ(k) : ∥x∥}. (5)

1) The planar system model versus the spherical model:
The proposed planar system model, with simplified spatial path
loss, is highly accurate in modeling the aggregate interference
power, SIR, and SINR at the narrow-beam LEO BS. The
reader can find Monte Carlo simulated comparisons to the
respective metrics in a more realistic spherical system model
in [7]. The motivation behind the PPP modeling of the UE
locations and uniform constellation model is also addressed
in the referred paper. Since the total interference and SIR
distributions match the realistic system model and no additive
approximate layer is introduced, we omit the Monte Carlo
simulated comparison metrics in the scope of this letter.

III. ANALYSIS

Corollary 1 (Density of the GP). The GP with a deterministic
H ≡ 1 is an inhomogeneous PPP on (0, 1) ∋ t with the density

λG1(t) ≜ κ̃/t, (6)

where κ̃ = κ/ log(2) and

κ ≜ πλ

(
φRX

Dh,ϵ

)2

(7)

is the average number of UEs inside the −3 dB footprint.
Furthermore, for general H , with the support in (−∞,∞) ∋ t

λG(t) ≜
κ̃FH(t)

t

∣∣∣
t∈R+

− κ̃(1− FH(t))

t

∣∣∣
t∈R−

, (8)

where FH(t) is the CCDF of the RV H .

Proof. See [7][Lemma 1] for the proof of λG1
(·) and for the

interpretation of κ, which is based on simple geometry. The
density of general G is encompassed in the proof of Lemma
2.

Lemma 2 (PGFL of the GP). Let f(·) : R+ → [0, 1], s.t.
f(x) → 1 as x → ∞. The probability generating functional
(PGFL) of G is

GG(f) = E

(∏

x∈G
f(x)

)
= exp

{
−
∫ ∞

−∞
(1− f(t))λG(t)dt

}
.

(9)

Proof. Multiplying each x ∈ G1 ⊂ (0, 1) by the i.i.d. Hx, the
probability kernel [8][Thm. 1.3.9 (Dispacement Theorem)] is
ρ(x, y) = fH(y/x)/x, where fh(·) is the PDF of H . We have
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E


∏

y∈G
g(y)


 = EG1

(∫ ∞

−∞
g(y)

∏

x∈G1

ρ(x, y)dy

)

= E

(∏

x∈G1

(∫ ∞

−∞
g(y)ρ(x, y)dy

))

(a)
= exp

{
−κ̃

∫ 1

0

(
1−

∫ ∞

−∞
g(y)ρ(t, y)dy

)
/tdt

}

= exp

{
−κ̃

∫ ∞

−∞
(1− g(y))

∫ 1

0

ρ(t, y)/tdtdy

}

= exp

{
−κ̃

∫ ∞

−∞
(1− g(y))

∫ 1

0

fH(y/t)/t2dtdy

}

(b)
= exp

{
−
∫ ∞

−∞
(1− g(y))λG(y)dy

}
, (10)

where in (a) we use the PGFL of G1 (see [7][Eq. (15)]). (b)
follows by partial integration of the inner integral separately
for y < 0 and y > 0.

Corollary 3. The SIR of the nearest UE signal at the typical
LEO BS is given by

SIR ≜ G(∥x0∥)
Io

=

(
Io

G(∥x0∥)

)−1

=




∑
x∈Φ\{x0}

HxG(∥x∥)

Hx0G(∥x0∥)




−1

= Hx0/
∑

x∈G1

Hxx = Hx0/Io. (11)

Proof. The result follows by conditioning x0 = o and applying
Slivnyak’s theorem on the ratio G(∥x∥)/G(∥x0∥). See details
in [7][Lemma 1]. The density λG(·) is given in Corollary 1.

Remark 1. Indeed, the SIR representation (11) is equivalent
to conditioning the nearest UE at o (when G(∥x0∥ = 1):
it follows that the SIR distribution does not depend on the
location distribution of the nearest UE, which can also be
conditioned arbitrarily at any location as long as the other
transmitters form a homogeneous PPP outside that distance.
This peculiar property is due to the Gaussian form of the path
loss (gain) G(·).

IV. SPATIAL CORRELATION

The first and second-order statistics of the total interference
are up to constants determined by the corresponding statistics
of the typical signal H:

Theorem 4 (Mean and the variance of the total interference).
Assume that the mean and the second power |E(H)|,E(H2) <

∞, respectively. The mean and the variance of the total
interference are

E(Io) = E

(∑

x∈G
x

)
(a)
=

∫ 1

0

λG(x)dx = κ̃E(H), (12)

var(Io) = var

(∑

x∈G
x

)
(b)
=

∫ ∞

−∞
x2λG(x)dx

= κ̃

(∫ ∞

0

xFH(x)dx−
∫ 0

−∞
x(1− FH(x))dx

)

= κ̃E(H2)/2. (13)

Proof. The integral identities (a) and (b) for the mean and the
variance of the sum of the Poisson point process can be found
in [9, Cor. 4.8].

Denote c ≜ ∥u− v∥, where u, v ∈ R2. The spatio-temporal
correlation-coeffecient of the interferences Iu(k) and Iv(l) is

ζ(u, v) = ζ(∥u− v∥) = ζ(c)

≜ E ((Iu(k)− E(Io))(Iv(l)− E(Io))) /var(Io)

= E

( ∑

x∈Φ(k)

Hx(k)2
−(Dh,ϵ∥x−u∥)2/φ2

RX×

∑

y∈Φ(l)

Hy(l)2
−(Dh,ϵ∥y−v∥)2/φ2

RX

)
/var(Io)

=
p2E(H)2λ

pκ̃E(H2)/2

∫

R2

2−(Dh,ϵ∥x∥)2/φ2
RX−(Dh,ϵ∥x−c∥)2/φ2

RXdx

=
pλ

κ̃E(H2)/2

κ̃

2λ
exp

{
−(Dh,ϵc)

2/φ2
RX

}

=
p

E(H2)
exp

{
−(Dh,ϵc)

2/φ2
RX

}
. (14)

In Figure 2, the spatial correlation coefficient is plotted for
various altitudes. The Gaussian correlation reflects the antenna
gain at each location.

Fig. 2. The spatial correlation at altitudes h ∈ {200, 1000, 2000} km.
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V. TEMPORAL CORRELATION OF LINK OUTAGES

Let Ak denote the event that the nearest UE SIR exceeds
the threshold θ at time instant k at the typical LEO BS, i.e.,

SIR = Hx0(k)/
∑

x∈G1(k)

Hx(k)x > θ. (15)

The SIR distribution with Rayleigh fading approximates the
SIR distribution with general Nakagami-m fading closely in
the simple coverage region θ > 1 (see [7][Fig. 6]); hence, we
use Hx ∼ exp(1). Similar methods can be used for Nakagami-
m fading, should one be interested in general θ.

The joint probability of the sequential events Ak, Al, l ̸= k,
occurring is as follows (see [3] for an analogous derivation for
a terrestrial network).

P(Ak, Al)

= P


Hx0(k) > θ

∑

x∈G1(k)

Hx(k)x, Hx0(l) > θ
∑

x∈G1(l)

Hx(l)x




= EH,G


 ∏

x∈G1(k)

exp {−θHx(k)x}


×

EH,G


 ∏

x∈G1(l)

exp {−θHx(l)x}




(a)
= EG

(∏

x∈G1

(
p

1 + θx
+ 1− p

)2
)

(b)
= exp

{
−κ̃

∫ 1

0

(
1−

(
p

1 + θr
+ 1− p

)2
)
/rdr

}

= e−p2θκ̃/(1+θ)(1 + θ)pκ̃(p−2). (16)

In (a), we average over the fading RVs (Laplace transform of
the exponential RV) and the ALOHA, and (b) is the PGFL of
the GP.

Similarly, one can derive1

P(Al) = (1 + θ)−pκ, (17)

and the conditional probability is

P(Ak|Al) =
P(Ak, Al)

P(Al)
= e−p2θκ̃/(1+θ)(1+ θ)p

2κ̃(1+ θ)−pκ̃.

(18)
We have P(Ak|Al) > P(Al); hence, the probability of con-
necting in the next time instance is more likely if the link is
connected at the current time instance: this reflects the property
that while some LEO BSs may be constantly in an outage,
others serve with a consistently good connection. The link
formation of the satellites is correlated across time to various
degrees depending on the GP parameter κ̃ and the ALOHA
parameter p. These notions on the temporal correlation apply
as long as the typical LEO BS operates within the spatially
correlated region.

Example 1 demonstrates the conditional outage probability
for an indefinitely large successful transmission SIR threshold
in a non-ALOHA network. The probabilities are independent

1The SIR distribution is the Lomax distribution with shape parameter pκ.

of κ̃. The limiting probabilities reflect how the outages are
significantly temporally correlated and depend on the current
states of the links.

Example 1 (The conditional outage probabilities in the
non-ALOHA network). Let p = 1. The probability that the
link at the typical LEO BS will be in outage if it is connected
is

P(Ac
k|Al) =

P(Ac
k, Al)

P(Al)
=

P(Al)− P(Ak, Al)

P(Al)

=
(1 + θ)−κ̃ − e−θκ̃/(1+θ)(1 + θ)−κ̃

(1 + θ)−κ̃

= 1− e−θκ̃/(1+θ) = 1− 1/e ≈ 0.63 as θ → ∞. (19)

On the other hand, the probability that the link will be in
outage if it is in outage is, by De Morgan’s law,

P(Ac
k|Ac

l ) =
P(Ac

k, A
c
l )

P(Ac
l )

=
1− (P(Ak) + P(Al)− P(Ak, Al))

1− P(Al)

=
1−

(
(1 + θ)−κ + (1 + θ)−κ − e−θκ̃/(1+θ)(1 + θ)−κ̃

)

1− (1 + θ)−κ

= 1 as θ → ∞. (20)

Fig. 3. The conditional and unconditional coverage probabilities for ρκ̃ = 1
with κ̃ ∈ {1, 10}, and the ALOHA parameter p ∈ {1/10, 1}.

A. Maximal average throughput without spatial correlation

The average bandwidth-normalized Shannon throughput of
the LEO network is given by

E(1 + log(SIR)) = 1/(pκ̃). (21)

Furthermore, in an interference-plus-noise-limited channel (or
a channel with sidelobe interference), the optimal throughput is
given for pκ̃ ≈ 1 (which means, on average, κ ≈ log(2) ≈ 0.7
UEs in a −3 dB footprint area). Accordingly, the optimal
throughput over the LEO BSs for small noise values is
E(1 + log(SIR)) ≈ 1. However, due to the significant spatial
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variation in the interference, some of the LEO BSs serve
transmitters with a high (average) throughput, and others serve
with a low (average) throughput, as long as they remain in the
spatially correlated region. This notion is made precise in the
meta distribution analysis in [7].

Utilizing ALOHA with a suitable transmission probability
p, we can remove the spatio-temporal correlation between the
SIRs and improve consistency in the throughput across the
network, while preserving the average throughput. Namely,
set p = 1/κ̃. Then the throughput E(1 + log(SIR)) = 1, but
it is easy to see that

P(Ak, Al) = P(Ak)P(Al) (22)

in the limit κ̃ → ∞. That is, the distributions of the SIR and
the throughput of sequential transmissions are independent:
Conditioning on any constellation configuration, the temporal
average throughput, averaged over sufficiently many transmis-
sions, at each LEO BS is equivalent.

Example 2 (An equivalent ALOHA network). Let φRX =
0.0278, ϵ = π/2, h = 200 km, and λ = 10−2/ km2. The GP
parameter is

κ̃ = πλ

(
φRX

sin2(ϵ)/h

)2

≈ 1,

which is also the average network throughput. To stabilize the
performance of each LEO BS while preserving the average
throughput, we can make the number of co-channel trans-
missions ten times denser, λ = 10−1, and set the ALOHA
scheduling at p = 1/10.

In Figure 3, we plot the unconditional and conditional
coverage probabilities for various κ̃ and p. In each plot,
pκ̃ = 1, which corresponds to optimal network throughput.
One can see that increasing κ̃ (while decreasing p) causes
the conditional distribution P(Ak, Al) > θ to approach the
unconditional distribution P(Ak) > θ.

VI. CONCLUSIONS

To wrap up the observations:
1) The spatial correlation coefficient of the interference at

the typical LEO BS has a simple Gaussian form, (14).
2) Should the link be in outage, the probability that it

continues to be in outage is increased compared to a
connected link (Example 1).

3) The ALOHA scheduling can mitigate the temporal cor-
relation in the SIR while preserving the average network
performance (22).

4) On the downside, this entails increasingly frequent
handovers at the typical LEO BS from a served user
equipment (UE) to another (the less correlation in the
SIR, the more frequent handovers are required).

In this paper, we have derived the spatial and temporal
interference correlations in an ALOHA LEO network. We
have proved that the outages are temporally correlated, and the
average performance of the LEO BSs serving the nearest UE at
each time instant can vary significantly over the network. How-
ever, the temporal correlation can be mitigated by an appropri-
ate ALOHA scheduling while preserving the average network

throughput, leading—instead of wasting potential throughput
resources—to a more consistent LEO BS performance. The
observations confirm those of many previous similar papers.
The system-level insight acquired by the stochastic geometry
analysis has a firm role in a better general view and the design
of the modern LEO networks, in optimizing the performance.

1) Model variations and extensions: The proposed interfer-
ence model is general and can be straightforwardly applied to
arbitrary fading distributions, shadowing, weather attenuation,
explicit Doppler effect, etc., or any of their combination,
as long as the signal variance remains finite. Furthermore,
the interference model applies to amplitude modeling and
to arbitrary typical interfering UE signal waveforms or the
envelope amplitude. In this regard, the proposed model and the
derived first and second-order statistics of the interference—
that have the strikingly simple closed forms—can be utilized
for theoretical, even closed-form estimates of the interference
waveform distribution, the temporal and spatial correlation
functions, and, further, to derive and study the interference
power spectral density and other channel characteristics at the
typical narrow-beam LEO BS (moving at its orbital speed). 2

Regarding statistical signal processing, including implementa-
tions that utilize machine learning, such comprehensive and
tractable a priori interference estimations are highly valuable,
for which we put forth a tractable framework.

The model also translates to a downlink, considering that
the LEO BS footprint locations follow a homogeneous PPP
on the Earth’s surface.
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